Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 1 of 70

Printed copies of this document are uncontrolled

Solar Orbiter: SPICE

Data Product Description Document

[SPICEFITS]

Issue 2.1

	Name	Signature / Date
Prepared by	Terje Fredvik and Stein Haugan	
Reviewed by		
Approved by		
Approved by		

Institute of Theoretical Astrophysics
University of Oslo
P.O. Box 1029 Blindern
0315 Oslo
Norway

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 2 of 70

Printed copies of this document are uncontrolled

EXTERNAL DISTRIBUTION

Name	Organisation
spice-calibration.ias@services.cnrs.fr	e-mail list
https://spice-wiki.ias.u-psud.fr/	SPICE team internal wiki
https://idoc-projets.ias.u-psud.fr/redmine/	SPICE operations redmine issue tracking tool

CHANGE LOG

D-4-	CHANGE LOG					
Date	Issue	Revision	Pages	Reason for change		
28.06.2018	0	1	All	Document created based on SOL-SGS- OTH-0004-DPDDtemplate and [SPICELLFITS]		
01.11.2018	0	9	All	Document rewritten and extended.		
07.11.2018	0	91	All	Added comments based on IAS/UiO telecon.		
07.11.2018	0	92		Fixed date, added READMODE in Section 4.7.1, removed an accidentally pasted random number		
04.03.2019	0	93	All	— Updated sections that are copied from LLDPDD (from v1.7). Noticeable changes include a new paragraph on "Scanned Time Series" in Section 4.1, a new header example in Section 4.7.1 with some new LL01+ keywords, clarifications on the relationship between ○BS_TYPE and the SPICE on-board Observation ID in Section 4.7.1.1.1, a new section 4.7.1.2.6 on keywords describing on-board processing steps, and a new table in Appendix B on the keywords that are derived from the value of STUDYFLG. See change log in LLDPDD for further details. — 3.3.3, 3.3.4.3, 4.6: the L2 data cubes will be corrected for geometric distortions, only S/C roll will be described by the PCi_j matrix. — 3.3: some restructuring of the text, changed temporary placeholder names of calibration routines to better match input from MPS. — 4.7.1: added L1+ keywords UCD, ○BS_ID, TIMEDER, TIMESYER, DATE—AVG, SOOPNAME, TELAPSE, LONPOLE, SPECSYS, VELOSYS, INFO_URL, and Solar ephemeris data keywords. Renamed SOOP_ID to SOOPTYPE. — 4.7.1.1.1: added explanation of Solar Orbiter-wide keyword OBS_ID		

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 3 of 70

				4.7.2: brief mention of L2. keywards
				- 4.7.2: brief mention of L2+ keywords
				PRXXXXN, CRDERI, CSYERI, solar
				ephemeris data keywords.
				- 4.7.2.1: New section on keywords
				describing the calibration processing steps (L1 to L2)
				- 4.7.4: New section on keywords
				describing the processing steps when
				creating derived data products (L2 to L3)
				 Appendix C rewritten
				 Multiple minor changes, reformulations
				and fixing of typos
21.03.2019	0	94	All	- 4.7.1 and 4.7.3.1: corrected value of BUNIT
				- 3.2, 3.3.4.1, 3.3.4.3, 4.1, 4.2, 4.7.1.5,
				4.7.3.2, and 4.7.4: Modified descriptions of
				intensity-windows to make it clear that
				such windows are not necessarily
				observed in line/background pairs.
				- 4.7.2.1: Added keyword PRPVERn giving
				the version of the processing function
				given by PRPROCn
03.05.2019	1	00	All	Multiple clarifications, restructuring and
00.00.2010	'		All	moving of text, fixings of typos and minor
				modifications.
				Updated sections that are copied from
				LLDPDD (v1.8). Noticeable changes
				include new section 4.7.1.1.7 on
				FILE RAW, and rewording on intensity-
				windows in 4.7.1.5
				- Keywords TIMEXOBT and TIMEXUTC
				renamed TIMAQOBT and TIMAQUTC.
02.12.2019	1	1	All.	Updated sections that are copied from
02.12.2010	'	'	3.3.1, 4.3.1,	LLDPDD (v.1.10). Noticeable changes
			4.4.1.2,	include new header example with new
			4.4.1.3.1,	COMPRESS and COMP RAT replacing
			4.4.2,	COMPRESS and COMPRAT replacing COMPDESC. COMPPARA set to 0 for SHC
			4.4.3.1,	
			4.4.4.2	and uncompressed data. New keyword
			1.1.1.2	SPIOBSID giving the SPICE Observation
				ID, no longer equal to OBS_MODE.
				Simplified sections by removing all
				examples of header differences between
				the example header and headers of HDUs
				with other window types and study types. Added new Section 4.4.4.2.
				All: Removed references in figures, tables and text to the near existing.
				tables and text to the non-existing study/window type combination sit-and-
				1
				stare intensity-windows.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 4 of 70

	I	ı	T	
				 Removed old Section 4.4.1.4.2 on description of processing steps in L1 files 3.3.1: Added additional processing steps and new sub-section 3.3.3.1 describing the handling of telemetry loss. 4.3.1: Added description of representation of space craft roll and geometrical distortions. 4.4.1.2: Brand new L1 FITS header example. 4.4.1.3.1: Rewritten. 4.4.2: Added description of L1 to L2 change of window size. 4.4.3.1: Use SI units All: Multiple minor corrections, additions, and deletions.
17.12.2019	1	2	1.3, 4, 4.4.1.2, 4.4.1.3.4, 4.4.1.4, 4.4.2	 - 1.3: Added [SPICELOST] to Reference Documents. - Updated sections that are copied from LLDPDD (v.1.11). Noticeable changes include added description of HDU layout for two-exposure mode (4.1), clarification of text and fixing of typo regarding the representation of lost telemetry in binary table extensions, and new Section 4.4.1.4 explaining the value of the BLANK keyword and the data type of the HDU's data arrays - 4.4.1.2: New header example - 4.4.2: New default behaviour of the calibration routines is to crop the windows to preserve the number of pixels instead of padding the windows to preserve the data

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 5 of 70

01.09.2020	1	3	1.3, 4.3, 4.4.1.2, 4.4.2, 4.4.1.3.3, 4.4.1.4.1, 4.4.4.3, 4.4.5, Appendix B, Appendix C	- Multiple sections: Updated paragraphs that are copied from LLDPDD (v1.13), see changelog therein. Important changes are found in paragraphs describing the scan direction of the slit: 4.3, 4.4.1.3.3, and Appendix B. - 1.3: Added [DISPERSION] to Reference Documents - 4.4.2: reverted to the previous way of treating windows, i.e. with padding to preserve the data. Added information on changes in plate scale when going from L1 to L2 - 4.4.1.2, 4.4.1.4.1, 4.4.4.3, 4.4.5: Renamed some of the FITS keywords used for lost telemetry book keeping to make the syntax more similar to the syntax of the SOLARNET keyword NLOSTPIX: NCHKLOST → NLOSTCHK NCHKFAIL → NFAILCHK NPLNAPRX → NAPRXPLN NPLNLOST → NLOSTPLN PKTLOST → LOSTPKTS BINLOST → LOSTPKTS BINLOST → LOSTPKTS BINLOST → LOSTBINS - 4.4.1.2: New FITS keyword XSTART. Removed TIMSYER and TIMRDER for the time being, may be reintroduced in the future - Appendix C: New paragraphs on IORs and Study Sets. fixed errors in Study Set
				and Study Sets, fixed errors in Study Set
				table.
				Multiple sections: future simple -> simple
				present

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 6 of 70

31.05.2021	1	4	3.2, 3.3.3, 4, 4.1, 4.4.1.2, 4.4.1.3.7, 4.4.1.3.9, 4.4.1.4, 4.4.1.5, 4.4.1.6, 4.4.1.7, 4.4.2, 4.4.2.1, 4.4.3.3, Appendix A, Appendix B, Appendix C	- 3.2: Rewritten text, updated all figures, added new figures 3-6 and 3-7. Updated all tables and added new table 3-4 3.3.3: Corrected names of calibration subroutines, added intensity units - 4: Updated Table 4.2. Added info on sitand-stare studies and repeated full detector studies, highlighted these changes in the text - 4.1:SPIOBSID-RASTERNO is a part of the filename 4.4.1.2: Updated L1 header example with new keywords extracted from IORs and Study Sets, data statistics keywords, and updated keywords on data processing 4.4.1.3.7: New section on FITS keywords describing linear fit to scan mirror position 4.4.1.4-7: Updated tables - 4.4.2: Added description of adjacent and near-adjacent windows. New value for UCD 4.4.2.1: Updated PRXXXXN keywords - Appendix A: Removed some descriptors that should not be there, e.g. [int] for sitand-stare studies Appendix B: RASTNUM renamed to RASTERNO 4.4.3.1: New formatting of BUNIT values following recommendations given in the FITS standard - 4.4.3.3: Updated PRXXXXN keywords - Appendix C: Added new keywords extracted from the IORs: STP and WINSHIFT, and from the Study Sets: MISOSTUD, XSTART, and MISOWIN.
------------	---	---	---	--

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 7 of 70

01.10.2021	1	5	4.1, 4.4.1.2, 4.4.2, 4.4.2.1, 4.4.5, Appendix C	 Multiple sections: Updated paragraphs that are copied from LLDPDD (v1.14), see changelog therein. Most changes are found in sections describing lost telemetry, e.g. 3.3.1, 3.3.1.1 and 4.4.1.3.5, 4.1: Updated Table 4-2 4.4.1.2: Updated L1 header example 4.4.2: Updated paragraphs on adjacent and near-adjacent windows in L2 files. Adjacent windows are now concatenated. 4.4.2.1: Added example of PRXXXXN keywords describing window concatenation in L2 4.4.5: Rewritten Appendix C: removed DARKSPID (the SPIOBSID of the dark that has been subtracted is given by PRPARAN (n being the processing step number of the 'DARKSUBTRACTION' processing step). Added SETFILE and SETVER. A few minor changes in wording
13.10.2021	1	6	4.4.1.7, 4.4.2	- 4.4.1.7: IWINBKG is now the HDU number of the HDU storing its background window, not the HDU EXTNAME. IWINLINE gives a comma separated list of HDU numbers of all HDUs having this background window defined as background 4.4.2: Neither Intensity-windows nor dumbbells are merged.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 8 of 70

00.04.0000	1 4	l -	004000	00400041111
03.01.2023	1	7	2.3.1, 2.3.2, 3.2, 3.3.2, 3.3.3, 3.3.4, 3.3.6, 3.4, 3.4.1, 3.4.2, 4, 4.1, 4.4.1.2, 4,4,1,3,3, 4.4.1.3.5, 4.4.1.3.6, 4.4.1.3.10, 4.4.2, 4.4.2.1, 4.4.2.1, 4.4.3.2, 4.4.4.3, 4.4.5, Appendix A, Appendix C	-2.3.1, 2.3.2: Added information on calibration - 3.2 and throughout the text: emphasise that most user should use L2 files, not L1 3.2 and throughout the text: emphasise that dumbbells and intensity-windows are not used regularly - 3.3.2: Added information on SPICE-S/C coalignment and S/C pointing variations. Added information on pixel level offset subtraction, new variable keyword RADCAL, and the removal of lost telemetry binary table extensions in L2 3.3.3: specify correct physical units for wide-slit observations. Add merging of adjacent windows as L2 processing step - 3.3.4: added warning about outdated description of Level 3 FITS files - 3.3.6, 3.4, 3.4.1, 3.4.2: Replaced placeholder text with some very basic information - 4, Figure 4-1: new figure to illustrate the Y-shift of the spectra on the two detectors - 4, Table 4.2: Added information on actual usage of the different study type/window type combination. 4.4.1.2: New L1 header example - 4.4.1.3.3 and throughout the text: added information on the FITS
			4.4.4.3,	L2.
				units for wide-slit observations. Add merging of adjacent windows as L2
				 - 3.3.4: added warning about outdated description of Level 3 FITS
				placeholder text with some very basic information
				illustrate the Y-shift of the spectra on the two detectors
				actual usage of the different study type/window type combination.
				4.4.1.3.3 and throughout the text:added information on the FITS
				keyword consequences of merging of adjacent windows in L2. Removed incorrect description of reversal of
				wide-slit images – 4.4.1.3.5: Added description of all keywords describing the telemetry
				- 4.4.1.3.6: New section coordinate distortions -4.4.1.3.9: New description of how
				to determine the study type – 4, 4.4.1, 4.4.1.5, etc: Added information on the lack of separate
				dumbbell HDUs due to the SW/LW detector y-offset 4.4.2.1: Updated processing steps

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 9 of 70

02.11.2023	1	8	1.3, 3, 3.2, 4, 4.4.1.2,	- 4.4.3.2: IWINBKG/IWINLINE are HDU numbers, not the EXTNAME - 4.4.1.3.6: New section on coordinate distortions due to S/C pointing instability - 4.4.1.3.8: Added information on pixel level offset subtraction - 4.4.1.3.10: rewritten to explain that the study type is now determined from the IORs and study definition files instead of mirror positions. 4.4.2: Updated description on L2 FITS keywords 4.4.4.3: New section describing the variable keyword RADCAL - 4.4.5: Added information on telemetry completeness keywords - Appendix A: added information on actual data product type usage - Appendix C: Added FITS keyword SETVER. Modified description of EXTNAME in the case of merged windows - All: added information on the infrequent usage of intensity-
			4.4.1.3.6, 4.4.2.2, 4.4.3, 4.4.3.1	windows and dumbbells. Removed some detailed descriptions of these types of observations. Simplified and shorted text a few places. Removed green colouring of text that indicated sections identical to sections in [SPICELLFITS] - 1.3: added references - 3: added information on IDL analysis tools - 3.2: removed detailed descriptions and illustrations of data flows of seldomly obtained observations. Updated Figure 3-1 - 4,: Updated Table 4-2 - 4.4.1.3: new L1 header example - 4.4.1.3.6: added information on new SolarSoft support of coordinate distortions. Updated Figure 4-2 including caption. - 4.4.2.2: Updated processing steps describing calibration, including correction for burn-in and time dependent detector response

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 10 of 70

				 4.4.3: Rewritten from scratch, now describes the L3 R files being produced by the pipeline 4.4.3.1: Rewritten from scratch
10.10.2024	2	0	3.2, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.5.1, 3.3.5.2 3.3.5, 4, 4.2, 4.4.1.2, 4.4.1.3.7, 4.4.2, 4.4.2.1, 4.4.2.2, 4.4.3	 All: Removed the concept of L3 C files. Removed all mentions of L2 files being used to create L3 QL files. Renamed L3 R files to L3 P to adhere to [S-META]. Removed all TBDs and "will be created" when it comes to L3 QL images and movies. 3.2: New Figure 3-1. Removed table of file types created by the pipeline. Mentioned the future possibility of gathering repeated full detector observations in a single L2 file. 3.3.2: Added info on new SPICE vs S/C pointing offset correction 3.3.3: Shortened, added info on: combined darks and cleaned darks, temperature dependent wavelength scale, and saturated pixels 3.3.4; Updated description of the contents of L3 P files 3.3.5: Simplified description of L3 QL files. 3.3.5: new section 4: Updated window/study usage in Table 4-2 with numbers up to September 2024

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 11 of 70

			- 4.2: new definition of L3 QL filenames - 4.4.1.2: New L1 header example - 4.4.1.3.7: Updated list of PRxxxxn keywords - 4.4.1.2: Added reference to new section describing saturated pixels in L2 files. Updated list of L2 keywords that differ from L1 keywords - 4.4.2: Added info on and cross-references to sections describing saturation and binary table extensions storing information on lost telemetry - 4.4.2.1: New section, with two subsections, describing saturated pixels in L2 files - 4.4.2.2: Updated examples of PRxxxxn keywords in L2 files - 4.4.3: Updated description of L3 P FITS files
2	1	4.2	 All: Corrected typos, minor adjustments of the text based on user input 4.2: Replaced underscores with hyphens in the freefield part of the filename. Deleted [-db] as a possible part of the filename.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024

Page: 12 of 70

Printed copies of this document are uncontrolled

TABLE OF CONTENTS

1.	INTH	ODUCTION	13
	1.1	Purpose and Scope	13
	1.2	APPLICABLE DOCUMENTS	
	1.3	Reference Documents	
	1.4	Abbreviations and Definitions	
2.	SPIC	E INSTRUMENT DESCRIPTION	17
	2.1	Science Objectives	17
	2.2	Operational Modes	
	2.3	Calibration.	
	2.3.1		
	2.3.2	? In-flight Calibration	17
3.	DAT	A GENERATION PROCESS AND ANALYSIS PROCESS	17
	3.1	Scientific Measurements	17
	3.2	Data Flow Overview	
	3.3	Data Generation	20
	3.3.1	Level 0 – Raw Data (FITS)	20
	3.3.2		
	3.3.3	B Level 2 – Science Data (FITS, calibrated)	23
	3.3.4		
	3.3.5	, , , , , , , , , , , , , , , , , , ,	
	3.3.6		
	3.3.7	, 5	
	3.4	VALIDATION	
	3.4.1		
	3.4.2	SOC Validation	25
4.	DAT	A PRODUCT DESCRIPTIONS	26
	4.1	FILENAME, L1, L2, AND L3 FITS FILES	
	4.2	FILENAME, L3 QL	
	4.3	THE PCI_J TRANSFORMATION MATRIX OF FITS FILES	
•	4.4	Data arrays and FITS headers	
	4.4.1		
	4.4.2		
	4.4.3	,	
	4.4.4	· · · · · · · · · · · · · · · · · · ·	
	4.4.5 bina	Flagging image planes with approximated or missing values due to lost compressed telemetry using table pixel list (L1)	_
AΡ	PENDI		
	PENDI)		
	PENDI)		
~ ~			

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 13 of 70

Printed copies of this document are uncontrolled

1. INTRODUCTION

1.1 Purpose and Scope

This Data Product Definition Document describes the format and content of the SPICE Science data. It includes descriptions of the data products and associated metadata, including the data format, content, and generation pipeline. These products will be stored and distributed from the Solar Orbiter Science Archive (SOAR) of the SOC.

The specifications described in this document apply to all SPICE Science products submitted to ESA's Solar Orbiter SOC for further archival and exploitation. The specifications described in this document apply to all SPICE data products generated by the Science Data Pipeline running at the SPICE premises in Oslo. It does not address the Low Latency data (see [LLData]) delived by the Low Latency Pipeline run at SOC, as these data products are described in [SPICELLFITS]. However, the LL01 data products produced by the Low Latency Pipeline are identical to the Level 0 data products created by the Science Data Pipeline, save for some minor FITS keyword differences.

1.2 Applicable Documents

APPL. DOC. SHORT	APPLICABLE DOCUMENT TITLE	DOCUMENT ID	ISSUE
[DPICD]	Data Producer to archive ICD	SOL-SGS-ICD-0002?	Will be rewritten from scratch

Table 1-1: Applicable Documents

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 14 of 70

Printed copies of this document are uncontrolled

1.3 Reference Documents

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 15 of 70

REF. DOC. SHORT	REFERENCE DOCUMENT TITLE	DOCUMENT ID	ISSUE
	Template for SoLO Data Product Description	SOL-SGS-OTH-0004- DPDDtemplate	
[A OD ON (MAO)	Document	'	4.0
[ACRONYMS]	SPICE Acronym List	SPICE-RAL-LI-0001	1.0
[LLFITSICD]	Solar Orbiter Interface Control Document for Low Latency Data FITS Files	SOL-SGS-ICD-0005	1.4
[FITSpaper]	Definition of the Flexible Image Transport System (https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf)		4.0
[METADATA]	Metadata Definition for Solar Orbiter Science Data	SOL-SGS-TN-0009	2.6
[IOR ICD]	Solar Orbiter Instrument Operations Request ICD	SOL-SGS-ICD-0003	1.1
[SEGU]	SOC Engineering Guidelines for External Users	SOL-SGS-TN-0006	1.2
[SOAR]	Solar Orbiter Archive Plan	SOL-SGS-PL-0009	2.5
[MAN]	SPICE Instrument User Manual	SPICE-RAL-MAN-0001	13.0
[DATAICD]	SPICE Data Interface Control Document	SPICE-RAL-ICD-5003	10.0
[RAW]	SPICE FM Raw Science Data Handling Scheme	SPICE-RAL-TN-5202	1.0
[DECOMP]	SPICE Science Data Decompression Recipe	SwRI EM 17489-017	0
[SUNSPICE]	The SunSPICE Ephemeris Packeage for Solar Missions, William Thompson, 2018 (https://hesperia.gsfc.nasa.gov/ssw/packages/sunspice/doc/sunspice.pdf)		
[DISTORTIONS]	Simulated Image Distortions in SPICE Data, William Thompson, 2019 (https://spice-wiki.ias.u- psud.fr/lib/exe/fetch.php/documents:internal:simulate.pdf)		
[DISPERSION]	SPICE spectral dispersion function and detector geometry, Thompson and Young, 2020 (unpublished, under development)		
[TEMPWAVE]	SPICE pixel to wavelength relationship along the orbit, Giunta & Grundy, 2024, presented at 2024 SPICE Concortium meeting (https://spice-wiki.ias.u-psud.fr/lib/exe/fetch.php/meetings:consortium_202406:ag_s pectral_shift_june2024.pdf)		
[CLEANDARK]	Cosmic Ray cleaned darks, Alfred Voyeux, 2024, unpublished, presented at 2024 SPICE Concortium meeting (https://spice-wiki.ias.u-psud.fr/lib/exe/fetch.php/meetings:consortium_202406:cosmic_removal.pdf)		
[MULTIDARK]	Dark correction using multi-dark observations, Sarah Leeks & Tim Grundy, 2024, unpublished, presented at 2024 SPICE Concortium meeting (https://spice-wiki.ias.u-psud.fr/lib/exe/fetch.php/meetings:consortium_202406:spice_darks_summary_jun_2024_v2.pdf)		
[LLdata]	Solar Orbiter Low-Latency Data: Concept and Implementation	SOL-SGS-TN-0003	1.2
[SPICELLFITS]	SPICE Low Latency Data Product Description Document	SPICE-UIO-DPDD-0001	1.14

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 16 of 70

Printed copies of this document are uncontrolled

Solar Orbiter SPICE Reconstructing Data with Lost Telemetry Packets (https://spice-wiki.ias.u-psud.fr/iblo/exe/fetch.php/documents:internal:spice-uio-dpdd-0003-0.2-reconstructing_data_with_missing_telemetrycomressed_images_hd.docx) Solar Observations (http://sdc.uio.no/open/solamet/, https://arxiv.org/abs/2011.12139.) FITSCOORD Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) WCSDISTORTIONS Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) SSTRED SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) ICFIT The Component Fitting System (CFIT) in IDL	TODIOTI COTI	0 1 0 1 11 0 0 10 5 0 11 0 11	00105 1110 0000	
psud.fr/lib/exe/fetch.php/documents:internal:spice-uio-dpdd- 0003-0.2-reconstructing_data_with_missing_telemetry comressed_images_hd.docx). [S-META] SOLARNET Metadata Recommendations for Solar Observations (http://sdc.uio.no/open/solarnet/ , https://arxiv.org/abs/2011.12139.) [FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818- 05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326- 21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[SPICELOST]	Solar Orbiter SPICE Reconstructing Data with	SPICE-UIO-DPDD-0003	0.2
[S-META] SOLARNET Metadata Recommendations for Solar Observations (http://sdc.uio.no/open/solarnet/, https://arxiv.org/abs/2011.12139.) [FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
[S-META] SOLARNET Metadata Recommendations for Solar Observations (http://sdc.uio.no/open/solarnet/, https://arxiv.org/abs/2011.12139.) [FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 47 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
[S-META] SOLARNET Metadata Recommendations for Solar Observations (http://sdc.uio.no/open/solarnet/, https://arxiv.org/abs/2011.12139.) [FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 47 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data.data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
Solar Observations (http://sdc.uio.no/open/solarnet/, https://arxiv.org/abs/2011.12139.) [FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
[FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818- 05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326- 21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[S-META]			2.2-live
[FITSCOORD] Representation of spectral coordinates in FITS, Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		Solar Observations (http://sdc.uio.no/open/solarnet/ ,		
Greisen & al., 2006, A&A, 446, 747-771 (https://www.aanda.org/articles/aa/pdf/2006/05/aa3818- 05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326- 21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		https://arxiv.org/abs/2011.12139,)		
(https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.jas.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[FITSCOORD]	Representation of spectral coordinates in FITS,		
(https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-05.pdf) [WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.jas.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		Greisen & al., 2006, A&A, 446, 747-771		
[WCSDISTORTIONS] Representations of distortions in FITS world coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		(https://www.aanda.org/articles/aa/pdf/2006/05/aa3818-		
coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		05.pdf)		
coordinate systems, Calabretta et al., 2004, draft (https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[WCSDISTORTIONS]	Representations of distortions in FITS world		
(https://fits.gsfc.nasa.gov/wcs/dcs_20040422.pdf) [SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		l •		
[SSTRED] SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 47 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 47 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
pipeline for CHROMIS and CRISP, Löfdahl et al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 47 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[SSTRED]	SSTRED: Data- and metadata-processing		
al., 2021, A&A 653, A68 (https://www.aanda.org/articles/aa/pdf/2021/09/aa41326- 21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 47 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	1			
(https://www.aanda.org/articles/aa/pdf/2021/09/aa41326-21.pdf) [CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
[CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		I , i i i i i i i i i i i i i i i i i i		
[CFIT] The Component Fitting System (CFIT) in IDL CDS Software Note No. 2 [DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		, , ,		
[DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software		21.par)		
[DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software				
[DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	roel = 1	T. 0 (SEIT) ID	0000 6 11 1	
[DATAMAN] SPICE Data analysis user's manual (https://spice-wiki.ias.u- psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[CFII]	The Component Fitting System (CFII) in IDL		2
(https://spice-wiki.ias.u-psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software			47	
psud.fr/doku.php/data:data_analysis_manual) [IDLANA] SPICE IDL Quicklook and Data Analysis Software	[DATAMAN]	SPICE Data analysis user's manual		
[IDLANA] SPICE IDL Quicklook and Data Analysis Software		(https://spice-wiki.ias.u-		
		psud.fr/doku.php/data:data_analysis_manual)		
	[IDLANA]	SPICE IDL Quicklook and Data Analysis Software		
		(https://github.com/ITA-Solar/solo-spice-ql/wiki/)		

Table 1-2: Reference Documents

1.4 Abbreviations and Definitions

FITS Flexible Image Transport System

JPEG Joint Photographic Experts Group; a lossy image format used for L3 QL

images (file extension .jpg)

MPEG-4 A lossy format for encoding and compressing video images, used for L3

QL movies (file extension .mp4)

LL01 Low Latency Level 1

L0 Level 0 L1 Level 1 L2 Level 2 L3 Level 3

L3 QL Level 3 Quicklook – can be be either L3 QL JPEG or L3 QL MP4

SHC Spectral Hybrid Compression

SOAR Solar Orbiter Archive

SOOP Solar Orbiter Observing Program

WCS World Coordinate System

A complete list of all acronyms used in the SPICE project can be found in [ACRONYMS].

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 17 of 70

Printed copies of this document are uncontrolled

2. SPICE INSTRUMENT DESCRIPTION

SPICE is a high-resolution imaging spectrometer operating at ultraviolet wavelengths. It will address the key science goals of the Solar Orbiter mission, by providing quantitative knowledge of the physical state and composition of the plasmas in the solar atmosphere, in particular investigating the source regions of outflows and ejection processes which link the solar surface and corona to the heliosphere. [MAN]

2.1 Science Objectives

See Table 2 in Section 2.1 of [MAN].

2.2 Operational Modes

Data from the SPICE instrument is read out in wavelength regions, see [MAN] Section 2.2.2.2. Depending on the operational mode (study definition), the data from each of these readout windows may result in 1, 2 or 3 data arrays. It is also possible to make a full-frame read-out, resulting in one data array per detector array.

2.3 Calibration

2.3.1 On-ground Calibration

The observations are calibrated on-ground by the Science Data Pipeline running in Oslo. Calibrated files are of Level 2, see Section 3.3.3. Most users should use Level 2 files in their data analysis.

2.3.2 In-flight Calibration

Dark current subtraction is the only form of calibration that may be applied in-flight. If not applied on-board, the dark current is subtracted on-ground by the Science Data Pipeline when creating Level 2 files.

3. DATA GENERATION PROCESS AND ANALYSIS PROCESS

The SPICE Science Data products are produced by the Science Data Pipeline running in Oslo. The data generation and analysis process are described in this section.

The science data products produced by the Science Data Pipeline are immediately available as to the SPICE consortium through the Oslo SPICE archive, http://astro-sdc-db.uio.no/vol/spice/fits/. The data are made available to the broad solar community through the Solar Orbiter archive following the policies described in the Archiving Plan [SOAR].

For practical hints and tips regarding data analysis, please see the SPICE Data analysis user's manual [DATAMAN]. IDL users may use the tools developed at UiO for quicklook and analysis purposes, see the team's wiki pages for details [IDLANA].

3.1 Scientific Measurements

SPICE is a high-resolution imaging spectrometer operating at extreme ultraviolet (EUV) wavelengths.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 18 of 70

Printed copies of this document are uncontrolled

3.2 Data Flow Overview

The SPICE team in Oslo retrieves the telemetry data from IAS, passing it as input to the Science Data Pipeline running in Oslo. The Science Data Pipeline produces science FITS files of Level 1, 2 and 3, and L3 Quicklook files.

Most users should use Level 2 files for their data analysis. Level 1 files are meant for advanced users. L3 files should only be used for quicklook purposes.

Level 1 and Level 2 files are in the FITS format (Sections 3.3.2 and 3.3.3).

Level 3 files come in three flavours: Level 3 FITS (L3 P, Section 3.3.4), Level 3 Quicklook images (L3 QL JPEG, Section 3.3.5.1), and Level 3 Quicklook movies (L3 QL MP4, Section 3.3.5.2).

The two SPICE detectors are read in wavelength regions, or windows. Each window is of a specific window type, see Table 4-1. A study is of a given study type (Table 4-2) and may consist of multiple window types. The study may be repeated. The dataflow differs for the multiple combinations of window types and study types, and for repeated vs non-repeated studies. See Section 4 for further information regarding window types, study types, and data products.

The most frequently obtained SPICE science observation is narrow-slit spectral rasters (see also Table 4-2). The dataflow inside the Science Data Pipeline for such an observation is illustrated in Figure 3-1.

Most SPICE observations are full detector single exposures. None of these are labelled as "Science", although only a minority of these files are darks. Many of these files may therefore contain scientifically interesting data. Since most full detector observations are repeated, we may gather all repetitions of such studies in single L2 FITS files in future data releases.

Wide-slit rasters are also obtained on a regular basis. Other observations are either mostly used for calibration purposes (full-detector single exposure observations), are not that frequently used (sit-and-stare observations), or have hardly been used at all (e.g. Intensity-windows and dumbbells). We therefore omit a thorough description of these types of data products in this document.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 19 of 70

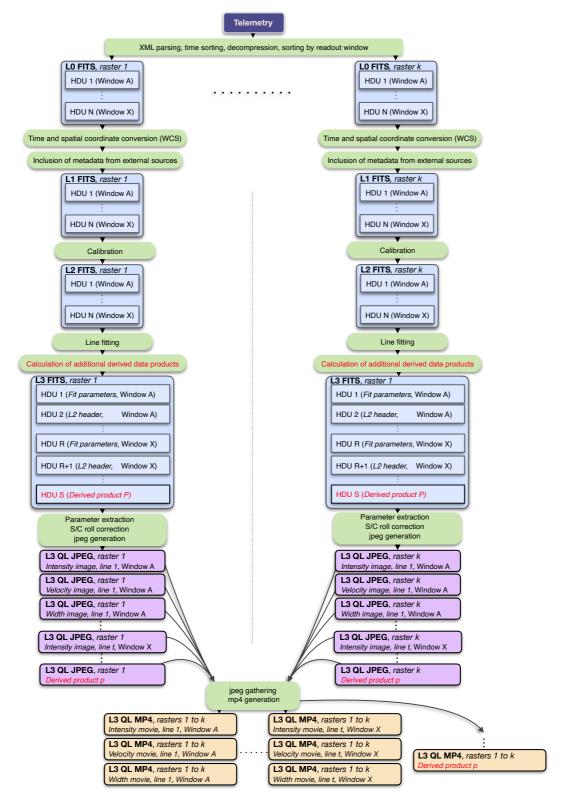


Figure 3-1 Pipeline dataflow: narrow-slit spectral-profile. Red colour signals planned processing steps and HDUs/file types that are not yet part of the pipeline. L3 FITS an L3 QL images are only made for rasters or sitand-stare. L3 QL movies are only made for repeated rasters or sit-and-stare observations.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 20 of 70

Printed copies of this document are uncontrolled

3.3 Data Generation

The Science Data Pipeline takes XML telemetry as input and produces files of all file levels described in Sections 3.3.1 to 3.3.4 sequentially. The pipeline is written in IDL, with the use of java objects and C executables. To speed up the processing the pipeline consists of tens of parallel IDL processes running simultaneously.

Most users should use Level 2 files for their data analysis. Level 1 files are meant for advanced users who either require full control of the calibration process or need access to the extended information on lost telemetry packets that these files contain. L3 files should only be used for quicklook purposes.

3.3.1 Level 0 – Raw Data (FITS)

Level 0 FITS files (L0) are used as temporary files within the Science Data Pipeline and will normally not be made available to the scientific community¹. L0 files contain uncalibrated data expressed in engineering units (counts).

The processing steps performed by the Science Data Pipeline to create an L0 file:

- 1. The Science Data Pipeline regularly checks its input directory for processing requests.
- 2. If a request is found, the XML contents of the request is read, and the telemetry data is extracted.
- 3. The telemetry packets are sorted by time of packet creation.
- 4. A processing request may contain telemetry from multiple observations. The following steps are repeated for each observation found in the sorted telemetry stream:
- 5. Each telemetry packet is inspected, and the data and metadata of a packet is extracted according to Sections 4.2.6.1 to 4.2.6.3 of [DATAICD]. Data and metadata in telemetry packets are accumulated into collections called raster segments. The data array of a raster segment is a 1-dimensional 8-bit array.
- 6. When a raster segment is complete, or there are no packets left in the telemetry that belongs to the segment, it is decompressed according to [RAW] and [DECOMP]. Special care must be taken when telemetry packets are lost, see Section 3.3.1.1.
- 7. The decompressed raster segment data array is translated into a 3-dimensional 16-bit data cube with dimensions (exposure, y, dispersion), according to [RAW]. If the telemetry was compressed using Spectral Hybrid Compression (SHC), this translation also involves a inverse Fourier transform as described in [DECOMP].
- 8. The decompressed raster segment data cubes are assembled into window data cubes. Window data cubes may consist of multiple raster segments, but each data cube only contains data stemming from a single readout window.
- 9. When all window data cubes of the observation are complete, or there are no more packets left in the telemetry, the data from each window data cube is reformatted into

¹ L0 files were made available to the SPICE consortium during the commissioning phase. The Science Data Pipeline up to (and including) the generation of L0 files is identical to the Low Latency Pipeline running at SOC. L0 files are indistinguishable from Low Latency Level 01 FITS files (LL01), except for the values of a few descriptive FITS keywords (e.g. FILENAME, LEVEL, CREATOR, etc.).

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 21 of 70

Printed copies of this document are uncontrolled

(x, y, dispersion, time) data cubes, with a singular x dimension for sit-and-stare observations and singular time dimension for raster scans.

- 10. A temporary L0 FITS file is created, with the data for each window stored in separate Header/Data Units (HDUs). The data from the first readout window are stored in the primary HDU, data from additional readout windows are stored in image extension HDUs.
- 11. If the telemetry contains dumbbell data that are downlinked in separate segments, i.e. not part of a spectral window, the data cubes are stored in the two last image extension HDUs (or in the last image extension HDU if only one dumbbell was recorded and/or received). Note that dumbbells are very seldomly downlinked separately, see Section 4 for additional information on dumbbell data.
- 12. Each L0 HDU that contains data from readout windows also contains all relevant metadata present in the telemetry packets, see Appendix B. Such HDUs also contain metadata that have been derived from the telemetry, in some cases using formulas and conversion tables stored in the virtual machine.
- 13. In the case of multi-exposure observations, the L0 file also contains a binary header extension storing the individual values of keywords that vary with exposure number, see Section 4.4.4.1.
- 14. In the case of multi-segment observations, the binary header extension mentioned in bullet 13 will also store the individual values of keywords that vary with segment number, see Section 4.4.4.2.
- 15. If telemetry packets are lost, the lost packet indices are stored in a binary table extension. If SHC compression was applied to the data, this binary table extension also stores the lost FFT Bin indices, see Section 4.4.4.4.
- 16. If telemetry packets are lost and JPEG or SHC compression was applied to the data, one or more image planes will either have approximated values or be completely lost (i.e. be set to the BLANK value). The coordinates of these image planes (or image plane ranges in the case of multi-segment observations) are stored in a binary table extension, see Section 4.4.5.²
- 17. GOTO 5

3.3.1.1 Reconstructing data with lost telemetry packets

During the first years of the mission, lost telemetry has not been a pronounced problem. We might not be that lucky in the future, and we have therefore implemented mechanisms for storing information on lost telemetry in the L1 FITS files. L2 files contain a simplified set of FITS keywords describing the completeness of the telemetry.

The implications of lost telemetry are discussed in [SPICELOST]. Missing telemetry packets affect the reconstructed data cube depending on the type of compression applied to the data:

- **No compression:** pixel columns in the dispersion-Y plane are lost, i.e., they have the BLANK value.
- **JPEG compression:** entire X-Y or dispersion-Y image planes of a single segment³ are affected. *All* pixels in affected planes have *either*:
 - o the BLANK value if the missing packets contained JPEG header information, or
 - approximated values if the missing packets did not contain JPEG header information

³ Note that an observation may consist of multiple segments. Telemetry loss may in such cases affect only parts of the data cube image planes, see Section 4.4.5.

21

² For technical reasons the flagging of lost or approximated image plane ranges currently does not work if all packets of a segment are missing.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 22 of 70

Printed copies of this document are uncontrolled

SHC compression: all pixels stemming from the segment that the lost packets belonged to have approximated values. The degree of approximation depends on which FFT Bins are lost, see discussion in [SPICELOST].

In Level 0 and Level 1 files, detailed information concerning lost telemetry is stored in binary table extensions and in FITS header keywords of the observational HDUs, see Sections 4.4.4.4. and 4.4.5. These binary table extensions are not present in Level 2 files.

3.3.2 Level 1 – Engineering Data (FITS, uncalibrated)

Level 1 FITS files (L1) contain uncalibrated data expressed in engineering units (counts).

Note that most users should use Level 2 files for their data analysis. Level 1 files are meant for advanced users who either require full control of the calibration process or need access to the extended information on lost telemetry packets that these files contain.

The FITS headers include additional keywords giving times converted from on-board time (OBT) to UTC, and the spatial coordinates are converted from being given relative to the spacecraft boresight to coordinates relative to the Solar disc. L1 files also include additional metadata gathered from the Study Set files and the IORs. These additional metadata describe all available information about:

- a) the study definition (e.g. name of the study, name of the readout windows, name of the author of the study, etc.), and
- b) this particular instance of the study (e.g. the Solar Orbiter-wide ID of the observation, name of the SOOP, etc)

The L1 FITS files also include all metadata needed by the calibration routines to convert the file from L1 to L2, including Solar ephemeris data.

The processing steps performed by the Science Data Pipeline to create an L1 file:

- 1. An L0 file is given as input to the Level 1 FITS file generator.
- 2. The on-board time is converted to UTC using the SunSPICE IDL implementation of the SPICE⁴ toolkit, see [SUNSPICE]. Additional FITS standard keywords DATE-BEG, DATE-END and DATEREF given in UTC are added to the L1 FITS headers.
- 3. Solar ephemeris data keywords are added using the SPICE toolkit.
- 4. IAS produces XML files with metadata that describe the specific studies and the specific instances of each study, i.e. the study definitions and the IORs. Oslo hosts a local database storing all this metadata. Based on this database and the FITS keywords in the input L0 file, additional metadata are added to the L1 file.
- 5. The keywords describing the pointing and FOV are converted from being relative to the spacecraft boresight to being relative to the solar disc (helioprojective) using SPICE toolkit routines and the XML metadata files obtained from IAS.
 - The spacecraft boresight pointing and roll are corrected for velocity aberration.
 - The offset between the SPICE and spacecraft boresight is corrected for, based on a coalignment analysis between SPICE and EUI (private communication, Auchère 2024)
 - The PCi j transformation matrix explained in Section 4.3 is updated in order to describe the resulting rotation of the field-of-view.

⁴ NASA's Observation Geometry System for Space Science Missions.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 23 of 70

Printed copies of this document are uncontrolled

■ The distortions of the Solar X and Solar Y coordinates due to any spacecraft pointing variations during the observation are stored in separate image extensions, see Section 4.4.1.3.6.

- 6. The L1 file inherits any binary table extensions present in the L0 file. An additional binary table column storing the acquisition time converted to UTC is added to the binary table extension. See Section 4.4.4 and 4.4.5 for details.
- 7. If a pixel level offset was added on-board, this offset is subtracted from the data array.

3.3.3 Level 2 – Science Data (FITS, calibrated)

Level 2 FITS files (L2) are calibrated L1 files⁵ that are ready for scientific analysis.

The processing steps performed by the Science Data Pipeline to create an L2 file:

- 1. An L1 file is given as input to L2 FITS file generator. The file is sent to the calibration wrapper routine <code>spice_prep.pro</code> which performs multiple processing steps, including calling the calibration subroutines in bullet points 2 through 6:
- 2. spice_prep_dark_offset_correction.pro: subtract a dark frame from the data (only if a dark frame hasn't already been subtracted on-board). The dark image can be one the following:
 - A combined dark created from multiple darks ([MULTIDARK]),
 - o A dark that has been cleaned for cosmic rays ([CLEANDARK]), or
 - A regular L1 dark file

The combined darks and the cleaned darks will be made available in SolarSoft in the future.

- 3. spice prep flat field correction.pro: correct the data for flatfield.
- 4. spice_prep_burnin_correction.pro: correct the data for burn-in. Note that only sections of the detectors where strong lines have reduced the sensitivity significantly are corrected for burn-in (see Section 4.4.2.2)
- 5. spice_prep_distortion_correction.pro: correct the data for spatial and spectral distortions, e.g. slit tilts, spectral slant, detector misalignments and non-uniform dispersion. Apply the corrections to the data cubes by interpolation onto a linear grid. Update the WCS keywords describing the wavelength scale by correcting for the temperature dependency [TEMPWAVE].
- 6. spice_prep_radiometric_calibration.pro: calibrate the data to physical units: W/m2/sr/nm for narrow-slit observations and W/m2/sr for wide-slit observations. This step also includes correcting the data for the time-dependent response of the detectors (i.e. the reduction of detector sensitivity with time).
- 7. Set image planes to $_{NaN}$ if they contain approximated values in the L1 file, see Sections 4.4.4.4 and 4.4.5.
- 8. Set pixels to NaN if they are influenced by saturated L1 pixels, see Section 4.4.2.1.
- 9. Merge the data arrays of adjacent windows, see Section 4.4.2.
- 10. The output from <code>spice_prep.pro</code> is a calibrated L2 FITS file. The data type of a L2 data array is floating point.
- 11. The L2 file inherits any binary table extension storing variable keywords from the L1 file, with an additional variable keyword RADCAL. Any binary table extensions storing information on lost telemetry are removed.

⁵ Dark files or files originating from the special engineering setup study with STUDY_ID=57 are not calibrated

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 24 of 70

Printed copies of this document are uncontrolled

3.3.4 Level 3 – Higher Level Data (FITS, Gaussian fit parameters)

Level 3 FITS files contain the results of Gaussian fitting of parameterized components to the line profiles, i.e. line peak intensity, line shift and line width. L3 FITS files are created from narrow-slit raster and sit-and-stare observations (i.e. windowed spectral-profile HDUs, see Table 4-1 and Table 4-2). Due to the contents of the files we call the Level 3 FITS files "L3 P", the letter P meaning "Parameterized". See Appendix IX of [S-META] for a thorough description of such parameterized components files.

Note that line fitting is sensitive to the initial values of the Gaussian parameters and in some cases the derived data products produced by the pipeline may therefore be less trustworthy than if the line fitting had been performed with human supervision. Also, the algorithm that automatically detects emission lines may fail, and it may report false positives or miss some weaker emission lines. For scientific purposes, we therefore strongly encourage users to perform the line fitting manually, starting with L2 files.

The processing steps performed by the Science Data Pipeline to create an L3 P file:

- 1. An L2 file is given as input to the L3 FITS file generator, which calls the ::create 13 file method of the spice data IDL object (see [IDLANA]).
- 2. Select HDUs with data stemming from narrow-slit spectral-profile windows and attempts to automatically detect and identify up to 10 emission lines in each readout window.
- 3. Give an initial guess of the amplitude, position, and width of each line as input to the line fitting routine cfit.pro (see [CFIT]), which returns the fitted gaussian line parameters peak intensity, line shift and line width.
- 4. Each observational HDU in the input L2 file results in two HDUs in the L3 P files. The first HDU contains the Gaussian fit parameters, the second contains the header of the parent L2 HDU. See Section 4.4.3. for details.
- 5. To be implemented: based on the fitted gaussian line parameters, secondary derived parameters will be estimated. The format of future Level 3 FITS files containing secondary derived parameters is yet to be finalised.

3.3.5 Level 3 QL – Higher Level Data Quicklook (JPEG/MP4, Gaussian fit parameters)

Level 3 Quicklook files are images and movies of the Gaussian line parameters found in L3 P FITS files. L3 Quicklook files are not suitable for scientific analysis, as they are not in an appropriate scientific file format, they are highly compressed, and they do not contain the necessary metadata required for a thorough analysis. They may, however, provide useful context information, and they can be used as a tool to find interesting observations that should be investigated further.

3.3.5.1 Level 3 Quicklook images (L3 QL JPEG)

The processing steps performed by the Science Data Pipeline to create L3 QL JPEG image files:

- 1. An L3 P file is given as input to the L3 guicklook image generator.
- 2. Extract a data array for each identified emission line, for each of the three Gaussian fit parameters
- 3. Plot each data array with axes and texts using the IDL Graphics functions
- 4. Rotate each image to adjust for any space craft roll, using the IDL Graphics rotate method
- 5. Create a JPEG file for each image, using the IDL Graphics save method

3.3.5.2 Level 3 Quicklook movies (L3 QL MP4)

The processing steps performed by the Science Data Pipeline to create L3 QL MP4 movie files:

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 25 of 70

Printed copies of this document are uncontrolled

- 1. When all L3 P files for a given day has been processed into L3 QL JPEG as described above, pass the resulting list of JPEG files to the L3 Quicklook movie generator.
- 2. For each SPIOBSID, add any JPEG images stemming from observations obtained the previous or next day to the JPEG image list.
- 3. Ignore images obtained from observations that are not repeated.
- 6. Loop through the file list: for each SPIOBSID, for each identified emission line, for each of the three Gaussian fit parameters, create an MP4 movie file using the IDLffVideoWrite object. The framerate is 5 fps.

3.3.6 CAL - Calibration data

The calibration routines and the necessary calibration data will be made available in SolarSoft (SSW) and in the SolarSoft Data Base (SSWDB).

3.3.7 HK - Housekeeping data

The Oslo pipeline does not process housekeeping telemetry, only science telemetry (both Low Latency Data and Science Data).

3.4 Validation

The FITS files produced by the Oslo pipeline are continuously validated by the Oslo team. Multiple validation procedures are run automatically every time new FITS files are created. The results of these tests are automatically sent to the Oslo team by e-mail. The team is also notified by e-mail and/or SMS if the pipeline encounters errors or crashes.

In earlier stages of the pipeline development the data products were compared to the output from RAL's *cube builder*.

3.4.1 Instrument Team Validation

The FITS files produced by the Oslo pipeline are automatically made available to the SPICE consortium for validation and analysis. Consortium members at IAS, MPS, RAL, SwRI, and GSFC are making invaluable contributions to the pipeline development and data product validation by reporting bugs, providing support, and participating in discussions.

3.4.2 SOC Validation

SOC validates the SPICE FITS files upon ingestion into the Solar Orbiter Archive.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Page: 26 of 70

Date: 25 Oct 2024

Printed copies of this document are uncontrolle

4. DATA PRODUCT DESCRIPTIONS

SPICE data products stored in FITS files are formatted in accordance with the rules outlined in [METADATA]. This section provides details on the formats, metadata, and filenames for each of the products included in the SPICE data.

A SPICE FITS file contains a primary Header/Data Unit (HDU), and it may contain one or more image extensions. All primary and image extension HDUs containing observational data have a full header as described in [METADATA] – i.e. there is no distinction between primary HDUs and image extensions other than those required by [FITSpaper]. Each HDU is regarded as a data product.

In addition, Level 1 and Level 2 files may contain binary table extensions storing auxiliary data that have individual values for each exposure of the observation. Level 1 files may also contain binary table extensions describing lost telemetry, see Sections 4.4.4 and 4.4.5.

Level 1 and Level 2 files storing multi exposure observations always have two additional image extensions describing coordinate distortions due to spacecraft pointing instabilities, see Section 4.4.1.3.6.

Finally, L2 files may have binary table extensions storing information about saturated pixels.

The SPICE detector is read in wavelength regions, or windows, of a specified wavelength range. The data array of an observational HDU stem from one of the following **6** window types, described in the WIN TYPE FITS keyword:

	Window type description	WIN_TYPE
1	Narrow-slit spectral-profile (2", 4", and 6" slits)	'Narrow-slit Spectral'
2	Dumbbell stack	'Dumbbell (lower)' Or 'Dumbbell (upper)'
3	Wide-slit (30" slit)	'Wide-slit'
4	Intensity-window (2", 4", and 6" slits)	'Intensity-window'
5	Full detector read-out (2", 4", and 6" slits)	'Full Detector Narrow-slit'
6	Full detector read-out (30" slit)	'Full Detector Wide-slit'

Table 4-1: All available window types and corresponding values of WIN_TYPE. Note that the vast majority of SPICE observations are of window type 1 and 5. Window type 2 and 4 have hardly ever been used, see Table 4-2.

Note that the spectra on the two detectors have a significant relative shift in the detector Y direction. Due to hardware limitations all type 1 windows within a study must have the same detector Y coordinates. Therefore, the readout windows must be significantly taller than the height of the slit to ensure that all windows on both detectors cover the full slit height, see Figure 4-1. This has two major consequences:

- 1) The upper and/or lower part of most windows of type 1 will contain dumbbell data. These pixels must be masked before any line fitting can be done to the spectral data of the window. The WCS keywords do not apply to the dumbbell pixels.
- 2) A multi-exposure Narrow-slit observation will normally only contain such extended windows of type 1, and no separate dumbbell windows.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 27 of 70

Printed copies of this document are uncontrolled

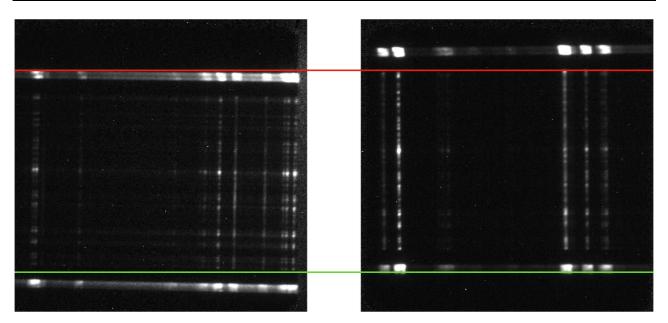


Figure 4-1: The spectra projected on the Short Wavelength detector (SW, left) and the Long Wavelength detector (LW, right) are shifted in the detector Y direction. The lower edge of the slit on the SW detector (green) is at a lower Y pixel value than the dumbbell region on the LW detector. The upper edge of the slit on the LW detector (red) is above the SW dumbbell region. In order to catch the full slit height on both detectors the readout windows must be covering the Y-range between the green and the red line, i.e., a spectral window will also contain dumbbell information. The figure shows SPIOBSID 150995892 corrected for flat field and dark current.

The window types may be of one the following *3 study types*, described in the STUDYTYP FITS keyword:

	Study type	Possible window types	Actual usage, all files	Actual usage, science only	STUDYTYP	Х	t
1	Sit-and-stare	1	1.9%	6.6%	'Sit-and-stare'	1	>1
		2	-	-			
		3	0.1%	0.1%			
2	Raster	1	22%	79%	'Raster '	>1	1
		2	<0.1%	-			
		3	4.4%	14.4%			
		4	<0.1%	-			
3	Single exposure	1	3.5%	_	'Single Exposure'	1	1
		3	0.2%	_			
		5	61%	_			
		6	6.8%	-			

Table 4-2: All available combinations of study types and window types, and their actual usage in percentage of the number of files obtained after commissioning up to September 2024. Note that for science studies most observations are narrow-slit spectral rasters. However, be aware that even if a file is not labelled as *Science* it may contain scientifically interesting data. As an example, even if none of the single exposure full detector observations are labelled as *Science*, only 2% of these files are darks.

The very seldomly used window type 4 (Intensity-window) may not be of study type 1 (Sit-and-stare). Window types 5 and 6 (full-detector read-out) may only be of study type 3 (single exposure). However, it is possible to repeat full detector observations, with or without moving the scan mirror.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 28 of 70

Printed copies of this document are uncontrolled

A future update of the pipeline will therefore gather all repetitions of full detector studies in single L2 FITS files.

Note that a full-frame read-out results in a FITS file with two HDUs, one for each detector array⁶.

Considering all possible combinations of window types and study types, SPICE FITS files may contain 9 distinct types of science data products or HDUs. The data product description is stored in the keyword DATAPROD, which is simply the concatenation of WIN TYPE and STUDYTYP, e.g. 'Narrow-slit Spectral Raster'. See also Table 4-8.

Note that in other SPICE documents and applications, e.g. [MAN] and in the SPICE Study Generator tool, the nomenclature is a bit different from what has been outlined above. As an example, instead of differentiating between study types and window types, the Study Generator only uses the concept of study type, which may have one of the following values: "Full Spectrum", "Spatial Scan", "Time Series" and "Scanned Time Series". In the pipeline a "Scanned Time Series" is treated identical to a series of repeated "Spatial Scans": in both cases the series of spatial scans are stored in multiple L1, L2 and L3 P FITS files – each file contains a single spatial scan per readout window

4.1 Filename, L1, L2, and L3 FITS files

Following the specifications in [METADATA], the SPICE FITS file names have the following format:

solo [level] spice-[slit]-[type][-db][-int] [time] V[version] [SPIOBSID]-[RASTERNO].fits

- [level] is L1, L2, or L3.
- [slit] is either w or n, for "wide" (30") or "narrow" (2"/4"/6") respectively.
- [type] is either -ras (for "raster"), -sit (for "sit-and-stare") or -exp (for "single exposure").
- [-db] is -db for files that include separate dumbbell extensions, otherwise empty. Note that due to technical reasons HDUs storing narrow-slit spectral-profile windows may contain dumbbell data, see page 26 of Section 4. The [-db] descriptor of such files is empty.
- [-int] is -int for files that include intensity-windows, otherwise empty.
- [time] is the UTC time at the beginning of the study.
- [version] is an incremental file number padded with '0' to two characters.
- The combination of SPIOBSID (SPICE Observation ID) and RASTERNO uniquely identifies a single observation. If a study is repeated all files in the series will have the same SPIOBSID but different RASTERNO.
- The combination of level, version, SPIOBSID and RASTERNO uniquely identifies a single FITS file

4.2 Filename, L3 QL

An L3 QL JPEG file is an image extracted from an L3 P FITS file. An L3 QL MP4 file is a movie made out of multiple L3 QL JPEG files. The L3 QL file names have the following format:

⁶ SPICE is capable of transmitting full-frame data in both compressed and uncompressed format. In this case the L0+ files contain four HDUs, two for each detector array, one with decompressed data and one with the uncompressed data.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 29 of 70

Printed copies of this document are uncontrolled

solo_L3-spice-q1-[line]-[product]-[slit]-[type][-int]_[time]
V[version][SPIOBSID]-[first RASTERNO][-final RASTERNO]-[WINNO]-[LINENO][product].[ext]

- [line] contains a string identifying the emission line.
- [product] contains the data product name: int, vel, or wid.
- [slit] is either w or n, for "wide" (30") or "narrow" (2"/4"/6") respectively.
- [type] is either -ras (for "raster"), -sit (for "sit-and-stare") or -exp (for "single exposure").
- [-int] is -int for intensity-windows images/movies, otherwise empty.
- [time] is the UTC time at the beginning of the study.
- [version] is an incremental file version number padded with '0' to two characters.
- [first RASTERNO] equals the value of RASTERNO for images. For movies it is the value of RASTERNO of the first file in the movie.
- [-final RASTERNO] is empty for images, for movies it is the value of RASTERNO of the final file in the movie
- [WINNO] is the value of WINNO of the parent L3 HDU
- [LINENO] is the line number identified in this window, starting at 0 for the strongest line in the window. Note that which line is the strongest in a given window may depend on the observation target.
- [ext] is either jpg or mp4.

4.3 The PCi j transformation matrix of FITS files

In general, the WCS coordinate c_i of a pixel with pixel indices $p_i = (p_1, p_2, p_3, ..., p_N)$ is expressed by:

$$c_i(p_1, p_2, p_3, ..., p_N) = CRVALi + CDELTi \sum_{j=1}^{N} PCi_j(p_j - CRPIX_j)$$

(1)

Thus, for a four dimensional data cube, the WCS coordinate c_i of a pixel with indices $p_{j=}(p_1,p_2,p_3,p_4)$ is expressed by:

$$c_{i}(p_{1},p_{2},p_{3},p_{4}) = CRVALi + CDELTi^{*}(PCi_{1}^{1}(p_{1}-CRPIX1) + PCi_{2}^{*}(p_{2}-CRPIX2) + PCi_{3}^{*}(p_{3}-CRPIX3) + PCi_{4}^{*}(p_{4}-CRPIX4))$$

For HDUs where each coordinate is coupled only to "its own" dimension (i.e. coordinate i=1 is coupled to data cube dimension j=1 only, coordinate i=2 is coupled to dimension j=2 only, etc), the PCi_j matrix has only diagonal entries and all off-diagonal entries have the default value of 0. This represents cases with no shear, rotation, mirroring, or transposition.

In L1+ (L1, L2 and L3) FITS files the rotation of the field-of-view is described by four PCi_j matrix elements: for a non-zero roll angle PC1_1 and PC2_2 do not have the default value of 1, and PC1_2 and PC2_1 do not have the default value of 0. The spacecraft counter-clockwise roll angle relative to Solar north is given in the CROTA keyword. In L2 FITS files all geometrical distortions other than the rotation of the FOV are corrected for by linear interpolation of the data, and these distortions are therefore not described by FITS keywords. However, the L1 to L2 calibration routine (spice_prep.pro) will be made publicly available and the users will be able to turn off the data interpolation if desirable. In such cases the geometrical distortions will be described by FITS keywords, see [DISTORTIONS] and [DISPERSION].

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 30 of 70

Printed copies of this document are uncontrolled

For both L1+ FITS files, the jth dimension of the data cube may contribute to the ith coordinate for raster scans and wide-slit (or separately downlinked dumbbell) observations. In these cases, the off-diagonal entries of the PCi j matrix are not 0:

- For raster observations, time increases for each new slit position. Since the scan direction of the scan mirror is from Solar West to Solar East this means that the time coordinate to decreases in the x dimension (j=1) of the data cube. Therefore, the PC4_1 element of the transformation matrix is less than zero, coupling the t coordinate to the x dimension of the data cube.
- For all wide-slit (and dumbbell) HDUs, the \times coordinate increases in the dispersion dimension (j=3), and the headers have a non-zero PC1_3 matrix element. The value of PC1_3 is given by the spatial pixel size in the dispersion dimension divided by CDELT1.

SPICE FITS files do not contain multiple repetitions of raster scans; therefore, the time dimension of raster scan data cubes is degenerate and there is no natural value for CDELT4. On the other hand, CDELT4 cannot be zero, since the product CDELT4*PC4_1 must be equal to the time between two consecutive exposures within a raster scan. We therefore let CDELT4 have the default value of 1, and PC4_1 is thereby equal to the time between exposures.

For sit-and-stare observations the t coordinate is only dependent on the fourth dimension (j=4), and PC4_1 in the equation above is 0. The time between two consecutive exposures is CDELT4 for sit-and-stare observations.

Note that the time coordinate t is the centre time of an exposure relative to the start time of the observation as a whole, i.e. the relative start time of the exposure + xposure/2. Thus, the t coordinate of the first exposure of an observation is xposure/2, the t coordinate of the exposure that corresponds to the reference pixel is CRVAL4, and t of the last exposure is the end time of the observation -xposure/2. This is true for both rasters and sit-and-stare observations, even if the reference pixel for rasters corresponds to exposure number NAXIS1/2, while the reference pixel for sit-and-stare observations corresponds to exposure 1.

4.4 Data arrays and FITS headers

4.4.1 Level 1 Data arrays and FITS headers

Although we encourage users to use L2 files for their scientific analysis, we start by describing L1 files. These files contain additional metadata and binary table extensions that are not present in L2 files.

4.4.1.1 General format of L1 data arrays

The dimensions of the L1 data arrays are (X,Y,D,t) for all 6 window types in Table 4-1.

The x dimension of a data array always denotes the number of slit positions during the observation, and y is the height along the slit, in pixels⁷.

The third dimension, D, always represents a position along the dispersion direction of the detector. For type 1, this dimension unambiguously corresponds to wavelength (lambda). For wide-slit (and

⁷ When referring to pixels along detector Y (height along the slit) or pixels along the dispersion direction (lambda/X'), these might represent *binned* pixels, depending on the study.

30

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 31 of 70

Printed copies of this document are uncontrolled

dumbbell) HDUs, however, this dimension corresponds to both spatial x and wavelength. Thus for any given x and t, the (Y,D) plane shows a transposed spatial image. However, the x position (relative to the centre of the solar disc) of every pixel in such an image is still given by the first WCS coordinate (CTYPE1='HPLN-TAN'). This means that there is an off-diagonal value in the PC i_j matrix to couple the x and x dimensions of the data cube, see Section 4.3

Dimension four, t, always represents the number of exposures per slit position. I.e. for sit-and-stare observations, t is the number of exposures and x is 1. For raster observations, where the slit is moved between each exposure, t is 1. For such observations, there is an off-diagonal element in the PCi j matrix to couple time and the x position of the slit, see Section 4.3.

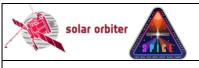
Intensity-window observations, window type 4, have only been tested briefly and are not included in regular SPICE operations. These observations are binned in the dispersion dimension with a binning factor equal to the width of the window. Intensity-windows can only be defined for raster studies. The size of the resulting data cube is (x, y, 1, 1), i.e. it has no spectral or temporal resolution. The wavelength coordinate is such that the value reflects the central wavelength (i.e. the midpoint between the central two pixels) of the readout window. Intensity-windows are normally observed in pairs: one window covers an emission line (line-window), and a nearby window covers a region with no strong emission lines (background-window). The data from the background-window may be used as an estimate of the background level of the window covering the emission line. Such a background intensity-window may be used as a background estimate for multiple line-windows. The link between an HDU storing the emission line data and the corresponding HDU storing the background data is established with FITS keywords, see Section 4.4.1.7.


For all study types, the maximum number of exposures is 480, i.e. x and t are always less than 480.

4.4.1.2 L1 FITS Header Example

Below is an example header of an L1 observational HDU including all keywords required by [METADATA].

A selection of the FITS keywords is further described in Section 4.4.1.3. The correspondence between the metadata parameter names used in [DATAICD] and the FITS keywords of the L1 HDUs is explained in Appendix B. The correspondence between the Study Generator fields and FITS keywords is outlined in Appendix C.


```
/ Written by IDL: Sun Sep 8 13:17:11 2024
XTENSION= 'IMAGE
                           16 / Integer*2 (short integer)
BITPIX =
                            4 / Number of dimensions
NAXIS
NAXIS1
                          192 / Number of slit positions (x)
NAXIS2 =
                          768 / Number of pixels along slit (y)
NAXIS3
                           16 / Number of pixels in dispersion dimension
NAXIS4 =
                            1 / Number of exposures per slit position (time)
PCOUNT =
                            0 / number of random group parameters
GCOUNT =
                            1 / number of random groups
DATE = '2024-09-08T13:17:11' / Date and time of FITS file creation
EXTNAME = 'Ly-gamma-CIII group bin (3/4)' / Extension name
FILENAME= 'solo L1 spice-n-ras 20240810T121921 V22 268435639-000.fits' / Filenam
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

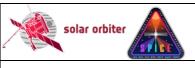
Date: 25 Oct 2024 Page: 32 of 70

```
| Study parameters valid for all Obs-HDUs in this file |
           STUDYTYP= 'Raster ' / Sit-and-stare, Raster or Single Exposure
STUDYDES= 'SUPER SYNOPTIC RSCW4' / Study description
STUDY = 'SCI_SYNOPTIC_SC_SL04_60.0S_FF' / SPICE Study name
OBS_MODE= 'SCI_SYNOPTIC_SC_SL04_60.0S_FF' / = STUDY
OBS_TYPE= 'KKte ' / Unique code for OBS_MODE
AUTHOR = 'Susanna Parenti' / Author of study
OBS ID = 'SSPI 1600 RF7 116 KKte 11f' / SOC Observation ID
SPIOBSID=
                    268435639 / SPICE Observation ID (hex 100000b7)
{\tt OBS\_DESC=~'Regular~synoptic~-~composition~raster'~/~Observation~description}
PURPOSE = 'Science' / Purpose of study (Science/Calibration/Checkout)
READMODE= 'Destructive' / Destructive or non-destructive
TRIGGERD= 'none' / Event that triggered observation
TRIGGERD= 'none '
OBJECT = 'Sun ' / Type of object observed
TARGET = 'on disk, East' / Coarse human interpretable pointing info
SOOPNAME= 'R_FULL_LRES_LCAD_RS-Synoptics-Low' / SOOP Campaign name(s)
SOOPTYPE= 'RF7 ' / SOOP Campaign name code(s)
STP = 321 / SoLO Short-Term Plan number
SETFILE = 'flt19-study-set.xml' / Study Set (study definitions) filename
                             28 / Study Set version
APID =
                           1404 / Application Process ID
NRASTERS=
                              1 / Number of planned rasters for this SPIOBSID
RASTERNO=
                              0 / Raster number (starting at 0)
STUDY ID=
                             18 / On-board Study ID slot (0-63)
MISOSTUD=
                           1963 / Ground study ID used in MISO planning tool
XSTART =
                            324 / [arcsec] Slit instr. x rel. to instr. boresight
XPOSURE =
                        60.0000 / [s] Total effective exposure time
FOCUSPOS=
                          12757 / Focus position
                              6 / Number of segments per window
NSEGMENT=
MOSAICID= '
                                / SVO pointing ID
                                / Blank when study is not a mosaic
SVO SEP1= 'INSTRUME, PURPOSE, SOOPNAME, STUDY, SPIOBSID' / SVO very fine split level
SVO SEP2= 'INSTRUME, PURPOSE, SOOPNAME, STUDY' / SVO fine split level
SVO SEP3= 'INSTRUME, PURPOSE, SOOPNAME' / SVO medium split level
SVO_SEP4= 'INSTRUME' / SVO coarse split level
SVO GRP = '268435639'
                               / SVO file group ID = string(SPIOBSID)
NWIN
                             16 / Total number of windows in this file
NWIN PRF=
                             16 / Number of windows not Dumbbell or Intensity
NWIN DUM=
                              0 / Number of Dumbbell windows
                              0 / Number of Intensity-windows
NWIN INT=
PXCOV3 = '49-80, 81-112, 212-243, 542-573, 739-770, 771-802, 917-948, 949-980&'
CONTINUE ', 1063-1094, 1095-1126, 1127-1158, 1159-1190, 1285-1316, 1317-1348,&'
CONTINUE ' 1783-1814, 1815-1846' / [pixel] All PXBEG3-PXEND3
            _____
           | Other keywords valid for all Obs-HDUs in this file |
           _____
TIMESYS = 'UTC '
                               / TIMESYS included for readability
DATEREF = '2024-08-10T12:19:21.200' / [UTC] Zero point of time coordinate DATE-BEG= '2024-08-10T12:19:21.200' / [UTC] Beginning of data acquisition DATE-OBS= '2024-08-10T12:19:21.200' / [UTC] Equals DATE-BEG
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 33 of 70

```
SEQ_BEG = '2024-08-10T12:19:22' / [UTC] Approximated start of observation series
TELAPSE = 11577.3209999 / [s] Elapsed time between beg. and end of acqu.
OBT_BEG = 776607315.851 / Start acquisition time in OBT
LEVEL = 'L1 ' / Data processing level
LEVEL = 'L1 ' / Data processing level CREATOR = 'SDP-SPICE' / Name of pipeline ORIGIN = 'University of Oslo' / Name of institution
VERS_SW = '4777 ' / UiO SVN revision number of L1 pipeline
VERSION = '22 ' / Incremental file version number
OBSRVTRY= 'Solar Orbiter' / Observatory Name
INSTRUME= 'SPICE ' / Instrument name
CROTA = -7.89198931890 / [deg] S/C counter-clockwise roll rel to Solar N
COMPLETE= 'C
                                / Complete data set, all windows combined
PCT CMPL=
                      100.000 / Completeness of data set, all windows combined
           _____
           | STUDYFLG and its derived keywords |
           _____
                             0 / Study flags
STUDYFLG=
NOSPECTR=
                              0 / Applies only to dumbbells
CALMODE =
                              0 / Applies only to full frame readouts
DBLEXP =
                              0 / If set, double exposure is enabled
DBLEXPNO=
                              0 / Applies only when DBLEXP=1
DARKMAP =
                              0 / If set, a dark map was subtracted on-board
BLACKLEV=
                              0 / If set, a bias frame was subtracted on-board
           ______
           | Keywords valid for this HDU (WINDOW10 97.62) |
           _____
WIN TYPE= 'Narrow-slit Spectral' / Description of window type
DATAPROD= 'Narrow-slit Spectral Raster' / WIN TYPE+STUDYTYP
TELESCOP= 'SOLO/SPICE/LW' / Telescope/Sensor name/Detector array name
DETECTOR= 'LW '
                               / Detector array name
                            10 / Window number (starting at 0) within this study
WINNO =
                          152 / Index in on-board window data table (0-255)
WINTABID=
                          2990 / Ground window ID used in MISO planning tool
MISOWIN =
                            -2 / [pixel] Win redshift rel to win 2990 base pos.
WINSHIFT=
                             2 / Slit ID (0-3)
SLIT ID =
SLIT WID=
                             4 / [arcsec] Slit width
                              0 / 0/1/2: not a dumbbell/lower dumbbel/upper dumbb
DUMBBELL=
WAVEUNIT=
                            -9 / Power of 10 by which the metre is multiplied
WAVEREF = 'vacuum '
                             / Wavelengths are given in vacuum
WAVEMIN = 97.4897025089 / [nm] Left edge of first read detector pixel
WAVEMAX =
                97.7541489542 / [nm] Right edge of last read detector pixel
                      0.532453 / [nm] Window width
WINWIDTH=
BTYPE = 'Intensity'
                                / Type of data
       = 'phot.count;em.line' / Unified Content Descriptors v1.23
BUNIT = 'adu
                                / Units of uncalibrated data
BSCALE =
                        1.00000 / Data value = BZERO + BSCALE*FITS array value
BZERO
                              0 / Default value for unsigned integers
```



Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 34 of 70

Printed copies of this document are uncontrolled

```
BLANK
                        65535 / Value of undefined and lost pixels
                      2359296 / Number of potentially usable pixels =all for L1 \,
NTOTPIX =
                      2359245 / Number of usable pixels excl. saturated & BLANK
NDATAPIX=
                           51 / Number of fully saturated pixels
NSATPIX =
                            0 / Number of lost pixels
NLOSTPIX=
                            0 / Number of approximated pix. b/c telemetry loss
NAPRXPIX=
                      99.9978 / NDATAPIX/NTOTPIX*100
PCT DATA=
                   0.00216166 / NSATPIX/ NTOTPIX*100
PCT_SATP=
                      0.00000 / NLOSTPIX/NTOTPIX*100
PCT LOST=
PCT APRX=
                      0.00000 / NAPRXPIX/NTOTPIX*100
DATAMIN =
                      1556.00 / [adu] Minimum data value
DATAMAX =
                      33196.0 / [adu] Maximum data value
DATAMEAN=
                     1609.50 / [adu] Mean data value
DATAMEDN=
                     1377.00 / [adu] Median data value
DATAP01 =
                     1231.00 / [adu] 1st percentile of data values
DATAP10 =
                     1271.00 / [adu] 10th percentile of data values
DATAP25 =
                     1305.00 / [adu] 25th percentile of data values
DATAP75 =
                     1582.00 / [adu] 75th percentile of data values
DATAP90 =
                     2142.00 / [adu] 90th percentile of data values
DATAP95 =
                     2761.00 / [adu] 95th percentile of data values
DATAP98 =
                     3728.00 / [adu] 98th percentile of data values
DATAP99 =
                     4577.00 / [adu] 99th percentile of data values
              795.242745765 / [adu] RMS dev: sqrt(sum((data-DATAMEAN)^2)/N)
DATARMS =
              0.494093915893 / Normalised RMS dev: DATARMS/DATAMEAN
DATANRMS=
DATAMAD =
               381.040966278 / [adu] Mean abs dev: sum(abs(data-DATAMEAN))/N
DATASKEW=
                10.9359742769 / Data skewness
DATAKURT=
                250.637676327 / Data kurtosis
PXBEG1 =
                          192 / [pixel] First read-out pixel in X dimension
                            1 / [pixel] Last read-out pixel in X dimension
PXEND1 =
                          101 / [pixel] First read-out pixel in Y dimension
PXBEG2 =
                          868 / [pixel] Last read-out pixel in Y dimension
PXEND2 =
                         1127 / [pixel] First read-out pixel in dispersion dim.
PXBEG3 =
                         1158 / [pixel] Last read-out pixel in dispersion dim.
PXEND3 =
                            1 / [pixel] First read-out pixel in time dimension
PXBEG4 =
                            1 / [pixel] Last read-out pixel in time dimension
PXEND4 =
                            1 / Binning factor in X dimension
NBIN1
                            1 / Binning factor in Y dimension
NBIN2
                            2 / Binning factor in dispersion dimension
NBIN3
                            1 / Binning factor in time dimension
NBIN4
                            2 / Total binning factor
NBIN
COMPRESS= 'Spatial Lossy'
                              / JPEG Compression description
                     4.00000 / Compression ratio decompressed/compressed
COMP RAT=
                     0.250000 / Compression ratio compressed/decompressed
COMPQUAL=
                            6 / Compression type (0-7)
COMPTYPE=
                           64 / Compression amount parameter (0-255)
COMPPARA=
                            {\tt 0} / Applies only to SHC-compressed data
SHCFFTID=
COMP ALG= 'Lossy/Spatial Lossy/4/6/64' / Lossy/COMP(RESS/ RAT/TYPE/PARA)
           _____
```

| Keywords describing telemetry of non-missing segments |

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 35 of 70

```
NPACKETS=
                            288 / Number of packets with observational data
LOSTPKTS=
                              0 / Number of lost packets w/data, variable keyword
LOSTBINS=
                              0 / Applies only to SHC-compressed data
                              0 / Number of lost checksum packets
NLOSTCHK=
NFAILCHK=
                              0 / Number of checksums failed
                              {\tt O} / Number of approximated X-Y plane sections
NAPRXPLN=
                              0 / Number of lost X-Y plane sections
NLOSTPLN=
           | World Coordinate System (WCS) keywords |
           _____
WCSNAME = 'Helioprojective-cartesian' / Name of coordinate system
LONPOLE = 180.000 / [deg] Native longitude of celestial pole
SPECSYS = 'TOPOCENT'
                       / Spectral coord. not corrected for S/C velocity
                      0.00000 / [m/s] Default for SPECSYS='TOPOCENT'
VELOSYS =
CTYPE1 = 'HPLN-TAN'
                               / Type of 1st coordinate
CNAME1 = 'Helioprojective longitude (Solar X), increases towards Solar West' /
CUNIT1 = 'arcsec '
                              / Units for 1st coordinate (for CRVAL1, CDELT1)
CRVAL1 =
            -158.292561318 / [arcsec] 1st coordinate of reference point
CDELT1 =
                        4.00000 / [arcsec] Increment of 1st coord at ref point
CRPIX1 = 96.5000 / [pixel] 1st pixel index of reference point PC1_1 = 0.990528670059 / Non-default value due to CROTA degrees S/C roll
PC1 2 =
              0.0362556648346 / Contribution of dim 2 to coord 1 due to roll
CRDER1 = 0.206005976086 / [arcsec] Mean stddev of Solar X 
 <math>CWERR1 = 0.299879319642 / [arcsec] Max absolute distortion, Solar X
CWDIS1 = 'Lookup ' / Type of WCS distortion correction
DW1 = 'EXTVER: 1'
                              / Extension version
      = 'NAXES: 1'
= 'AXIS.1: 1'
                              / Axes in the distorion array
DW1
                              / Correction of Solar X
DW1
      = 'ASSOCIATE: 1'
                               / Association stage is pixel coordinates
DW1
      = 'APPLY: 6'
                               / Application stage is world coordinates
DW1
CTYPE2 = 'HPLT-TAN'
                                / Type of 2nd coordinate
CNAME2 = 'Helioprojective latitude (Solar Y), increases towards Solar North' /
CUNIT2 = 'arcsec ' / Units for 2nd coordinate (for CRVAL2, CDELT2)
CRVAL2 =
           -23.3248438669 / [arcsec] 2nd coordinate of reference point
CDELT2 =
                       1.05620 / [arcsec] Increment of 2nd coord at ref point
CRPIX2 =
                       384.500 / [pixel] 2nd pixel index of reference point
PC2 1 = -0.520000222806 / Contribution of dim 1 to coord 2 due to roll
PC2^{-}2 =
               0.990528670059 / Non-default value due to CROTA degrees S/C roll
              0.169621795543 / [arcsec] Mean stddev of Solar Y 0.223019227065 / [arcsec] Max absolute distortion, Solar Y
CRDER2 =
CWERR2 =
CWDIS2 = 'Lookup' / Type of WCS distortion correction

DW2 = 'EXTVER: 2' / Extension version


DW2 = 'NAXES: 1' / Axes in the distorion array
       = 'NAXES: 1'
= 'AXIS.1: 1'
                              / Correction of Solar Y
DW2
                               / Association stage is pixel coordinates
       = 'ASSOCIATE: 1'
DW2
       = 'APPLY: 6'
                                / Application stage is world coordinates
DW2
CTYPE3 = 'WAVE
                                / Type of 3rd coordinate
CNAME3 = 'Wavelength'
                               / Description of 3rd coordinate
                               / Units for 3rd coordinate (for CRVAL3, CDELT3)
CUNIT3 = 'nm
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 36 of 70

```
CRVAL3 =
                 97.5557940383 / [nm] 3rd coordinate of reference point
CDELT3 =
              0.00826238047402 / [nm] Increment of 3rd coord at ref point
                       8.50000 / [pixel] 3rd pixel index of reference point 1.00000 / Default value, no rotation
CRPIX3
PC3 3
CTYPE4 = 'UTC
                               / Type of 4th coordinate
CNAME4 = 'Time (Degenerate Dimension)' / Description of 4th coordinate
CUNIT4 = 's
                              / Units for 4th coordinate (for CRVAL4, CDELT4)
                 5788.65029144 / [s] 4th coord of ref point, relative to DATEREF
CRVAL4 =
CDELT4 =
               1.0000000000 / [s] Degenerate dimension; default value
CRPIX4 =
                       1.00000 / [pixel] 4th pixel index of reference point
PC4\_4 = 1.00000 / Default value, no rotation 
 <math>PC4\_1 = -60.3000030518 / Contribution of dimension 1 to coordinate 4
           | Auxiliary data and reference to bintab with variable keywords |
           ______
VAR KEYS= 'VARIABLE KEYWORDS; TIMAQOBT, MIRRPOS, TN FOCUS, TN GRAT, TN SW, TN LW, T F&'
CONTINUE 'OCUS, T GRAT, T SW, T LW, VN MCPSW, VN MCPLW, VN GAPSW, VN GAPLW, V MCPSW, V&'
CONTINUE ' MCPLW, V GAPSW, V GAPLW, TIMAQUTC, CRDER1, CRDER2
CONTINUE '' / Variable keywords
TIMAQOBT=
                776613074.501 / [OBT] Average Start time of data acquisition
MIRRPOS =
                      35776.8 / [adu] Average Scan mirror position
TN FOCUS=
                      2181.94 / [adu] Average SFM focus temperature
TN GRAT =
                      2163.87 / [adu]
                                         Average SFM grating temperature
                      2783.84 / [adu] Average HAS SW temperature 2782.78 / [adu] Average HAS LW temperature
TN SW =
TN LW =
T FOCUS =
                     8.00519 / [Celsius] Average SFM focus temperature
T GRAT =
                      8.47212 / [Celsius] Average SFM grating temperature
                     -20.1336 / [Celsius] Average HAS SW temperature
-20.1056 / [Celsius] Average HAS LW temperature
T SW =
T LW =
                         2700 / [adu] Average MCP SW voltage
VN MCPSW=
                         2582 / [adu] Average MCP LW voltage
VN MCPLW=
                         2936 / [adu] Average GAP SW voltage
VN GAPSW=
                         2934 / [adu] Average GAP LW voltage
VN GAPLW=
                          895 / [V] Average MCP SW voltage
V MCPSW =
                          847 / [V] Average MCP LW voltage
V MCPLW =
                          2794 / [V] Average GAP SW voltage
V GAPSW =
V GAPLW =
                          2792 / [V] Average GAP LW voltage
TIMAQUTC= '2024-08-10T13:55:19.860' / [UTC] Average Start t. of data acquisition
           ______
           | Keywords describing processing steps |
           _____
PRSTEP1 = 'DISPERSION-BINNING' / Type of processing, step 1
PRPROC1 = 'Dispersion Binning (On-board)' / Name of procedure, step 1
PRSTEP2 = 'COMPRESSION'
                              / Type of processing, step 2
PRPROC2 = 'JPEG Compression (On-board)' / Name of procedure, step 2
PRSTEP3 = 'TELEMETRY-PARSING' / XML decoding, decompression if applicable, etc
PRPROC3 = 'spice process telemetry.pro' / Name of procedure, step 3
PRPVER3 = '03.07.00' / Version of procedure, step 3
PRLIB3A = 'uio-spice-pipeline/telemetry parsing' / Library containing PRPROC3
                     / UiO SVN revision number of PRLIB3A (2024-08-07)
PRVER3A = '4681
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 37 of 70

```
PRSTEP4 = 'PIXEL-LEVEL-OFFSET-SUBTRACTION' / Type of processing, step 4
PRPROC4 = 'spice_file_to_oslo_fits.pro' / Name of procedure, step 4
PRPVER4 = '4633 ' ' / UiO SVN revision number of PRPROC4 (2024-07-03)
PRPREF4 = 'pixel level offset = 200' / [adu] Offset subtracted from data values
PRLIB4A = 'uio-spice-pipeline' / Software library containing PRPROC4
                             / UiO SVN revision number of PRLIB4 (2024-09-06)
PRSTEP5 = 'SPATIAL-COORDINATE-CALCULATION' / Type of processing
PRPROC5 = 'get sunspice hpc point.pro' / Proc. returning s/c helioproj. coords
                       60067 / Mod. julday of PRPROC5 (2023-05-03)
PRPVER5 =
PRPARA5 = 'correction = "lt+s"' / Correct for velocity aberration
COMMENT
         ABERRATION CORRECTION APPLIED TO THE S/C COORDINATES
COMMENT
COMMENT
PRREF5 = 'spk="solo_ANC_soc-orbit-stp_20200210-20301120_327_V1_00367_V01.bsp"&'
CONTINUE ', spk date = "2024-08-21"
CONTINUE ',ck="solo_ANC_soc-flown-att_20240810T123827-20240811T195643_V01.bc"&'
CONTINUE ', ck_date = "2024-08-12"
CONTINUE '' / Name and date of loaded ephemeris (spk) and attitude (ck) files
PRLIB5A = '$SSW/packages/sunspice/idl/' / Software library containing PRPROC5
                       60345 / Mod. julday of PRLIB5A (2024-02-05)
PRVER5A =
PRSTEP6 = 'SPATIAL-COORDINATE-CORRECTION' / Type of processing, step 6
PRPROC6 = 'correct_spice_offset_relative_to_spacecraft.pro' / Name of procedure,
PRREF6 = 'delta instrument x = -79,
                                                                         ٠ &
CONTINUE 'delta instrument y = -45
                                                                         ٠ &
CONTINUE '' / [arcsec] constant SPICE vs spacecraft offset
PRLIB6A = 'uio-spice-pipeline' / Software library containing PRPROC6
PRVER6A = '4777 
                           / UiO SVN revision number of PRLIB6A (2024-09-06)
          | Hardware and software processing environment |
LONGSTRN= 'OGIP 1.0'
                            / The OGIP long string convention may be used.
COMMENT This FITS file may contain long string keyword values that are
COMMENT continued over multiple keywords. This convention uses the '&'
COMMENT character at the end of a string which is then continued
COMMENT on subsequent keywords whose name = 'CONTINUE'.
                                                                         ه ۱
PRENV3 = ' Kernel: Linux
CONTINUE ' Kernel release number: 5.14.0-362.24.1.el9_3.x86_64
                                                                         &'
CONTINUE ' Architecture: x86_64
                                                                         ٤'
CONTINUE ' Host name: astro-sdc-fs2.uio.no
                                                                         &'
CONTINUE ' OS: Red Hat Enterprise Linux 9.4 (Plow)
                                                                         &'
CONTINUE ' CPU: Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
                                                                         ړ ٠
CONTINUE ' IDL 8.9.0 (Jun 07 2023 (452795)), memory bits: 64, file offset bi&'
CONTINUE 'ts: 64 ' / Hardware and software
          ______
          | SOLARNET keywords, and additional keywords |
          ______
SOLARNET=
                     1.00000 / Fully/Partially/No SOLARNET compliant (1/0.5/-1
OBS HDU =
                           1 / HDU contains observational data (1) or not (0)
PARENT = 'solo LO spice-n-ras 0776607316 V202409061043C 268435639-000.fits' / L
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 38 of 70

```
FILE RAW= 'sc 2024 08 09.xml;sc 2024 08 10.xml' / Telemetry file
INFO URL= 'https://spice.ias.u-psud.fr/' / URL to additional information
            | Solar Ephemeris Keywords |
                122991093376. / [m] S/C distance from Sun
DSUN OBS=
DSUN AU =
                 0.822144716106 / [AU] S/C distance from Sun
                1166.72582332 / [arcsec] Apparent photospheric Solar radius
RSUN_ARC=
CAR ROT =
                             2287 / Carrington rotation number
HGLT_OBS= -1.30522090588 / [deg] S/C Heliographic latitude (B0 angle)
HGLN_OBS= 158.373995710 / [deg] S/C Heliographic longitude
CRLT_OBS= -1.30522090588 / [deg] S/C Carrington latitude (B0 angle)
CRLN_OBS= 326.959931589 / [deg] S/C Carrington longitude (L0 angle)
               -113900403815. / [m] S/C Heliocentric Earth Ecliptic X
HEEX OBS=
HEEY OBS=
                45826764052.3 / [m] S/C Heliocentric Earth Ecliptic Y
HEEZ OBS=
                  7308540012.44 / [m] S/C Heliocentric Earth Ecliptic Z
HCIX OBS=
                 93487859090.1 / [m] S/C Heliocentric Inertial X
HCIY OBS=
                  79868520721.7 / [m] S/C Heliocentric Inertial Y
               -2801544259.79 / [m] S/C Heliocentric Inertial Z -24876.1858153 / [m/s] S/C Heliocentric Inertial X Velocity
HCIZ OBS=
HCIX VOB=
HCIY VOB=
                 10332.3647369 / [m/s] S/C Heliocentric Inertial Y Velocity
               -3051.62288949 / [m/s] S/C Heliocentric Inertial Z Velocity -16425.1138967 / [m] S/C Heliocentric Aries Ecliptic X
HCIZ VOB=
HAEX OBS=
HAEY OBS=
                -21497.4833279 / [m] S/C Heliocentric Aries Ecliptic Y
HAEZ OBS=
                -1722.97071322 / [m] S/C Heliocentric Aries Ecliptic Z
                -114304000553. / [m] S/C Heliocentric Earth Equatorial X 45316176548.9 / [m] S/C Heliocentric Earth Equatorial Y -2801544259.79 / [m] S/C Heliocentric Earth Equatorial Z
HEOX OBS=
HEOY OBS=
HEQZ OBS=
                  265531691652. / [m] S/C Geocentric Solar Ecliptic X
GSEX OBS=
                 -45826764052.3 / [m] S/C Geocentric Solar Ecliptic Y 7308540012.44 / [m] S/C Geocentric Solar Ecliptic Z
GSEY OBS=
GSEZ OBS=
                 -12129.6702058 / [m/s] Radial velocity of S/C away from the Sun
OBS VR =
                 95.5334055203 / [s] Time(Sun to Earth)-Time(Sun to S/C)
EAR TDEL=
SUN TIME=
                 410.254127793 / [s] Time(Sun centre to S/C)
DATE EAR= '2024-08-10T12:20:56.733' / [UTC] DATE-BEG + EAR_TDEL
DATE SUN= '2024-08-10T12:12:30.946' / [UTC] DATE-BEG - SUN TIME
            ______
            | HISTORY and checksums |
            _____
HISTORY process request.pro
HISTORY spice process telemetry.pro
HISTORY spice 10 to 11.pro
DATASUM = '78\overline{2}35\overline{8}984'
                                  / data unit checksum created 2024-09-08T11:17:41
CHECKSUM= 'b7DAd5D5b5DAb5D3'
                                  / HDU checksum created 2024-09-08T11:17:41
                         32767 / Original BLANK value
O BLANK =
O BZERO =
                          32768.0 / Original BZERO Value
END
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 39 of 70

Printed copies of this document are uncontrolled

4.4.1.3 Brief description of some selected FITS keywords

All keywords that are described in this section apply for both L1 and L2 files, except for the L1 only keywords mentioned in Sections 4.4.1.3.4 and 4.4.1.3.5.3.

4.4.1.3.1 Keywords identifying the study

The keyword <code>OBS_TYPE</code> is a 3-character alphanumeric string that uniquely identifies the <code>OBS_MODE</code>, which contains the name of the SPICE study. The value of the Solar Obiter-wide <code>OBS_MODE</code> is repeated in the SPICE-specific keyword <code>STUDY</code>.

The keyword <code>OBS_ID</code> contains the SOC Observation ID. The <code>OBS_ID</code> is built up of parameters that together uniquely identify the observation in a Solar Orbiter-wide context. The format of the SOC Observation ID is:

AAAA PPvV SSS III 0000 JJJ

The components of this string are:

AAAA: 4-character instrument ID, is always "SSPI" for SPICE

PPvV: 4-character string, Long-Term Planning plan ID

SSS: 3-digit alphanumeric SOOP Type, equals FITS keyword SOOPTYPE

III: 3-digit (base-58) SOOP Instance

0000: 4-character (base-58) Observation Type, equals FITS keyword OBS TYPE

JJJ: 3-digit (base-58) Observation Instance

An observation may belong to multiple SOOPs. In such cases, the SOC Observation ID contains multiple strings as described above, each sub-string being separated by a semicolon. See [IOR-ICD] for details.

Note that the SPICE Observation ID is given in the keyword <code>SPIOBSID</code>. This keyword uniquely identifies an observation series in a SPICE context (the combination of <code>SPIOBSID</code> and <code>RASTERNO</code> uniquely identifies a single observation). The <code>SPIOBSID</code> is a 32-bit on-board monotonically increasing observation counter.

4.4.1.3.2 Keywords derived from the value of STUDYFLG

The 8-bit value of the STUDYFLG keyword stems from the Science Header Packets, and the 6 keywords following STUDYFLG in the header example are set based on this value, in accordance with Section 4.2.6.1. of [DATAICD].

4.4.1.3.3 Keywords describing the size of the readout windows

Note that in L2 files any adjacent windows are merged, see Section 4.4.2. In such cases the keywords described below apply to the merged window.

The window start column on the detector and the window width are both given in pixel coordinates in the telemetry, see Table 4-10. The values of WAVEMIN and WINWIDTH are derived from these pixel values, using the conversion from pixel indices to nm given in [DISPERSION] and [MAN]. Note that for L2 files all wavelength related keywords are recalculated to correct for the temperature dependent wavelength scale [TEMPWAVE]. WAVEMIN is the wavelength of the leftmost edge of the first detector pixel column of the readout window, ignoring any binning, and WINWIDTH is the edge-to-edge window width. WAVEMAX is the wavelength corresponding to the rightmost edge of the window's last pixel column. For narrow-slit observations the pixel value of the window start column (starting at 1 for the leftmost pixel column on the SW detector, 1025 for the

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 40 of 70

Printed copies of this document are uncontrolled

leftmost column on the LW detector) can be found in the Solar Orbiter mandatory keyword PXBEG3, and the pixel value of the last column is stored in PXEND3. The edge-to-edge pixel width of the window is therefore PXEND3 - PXBEG3 + 1. PXCOV3 contains a comma separated list of the detector coverage in the dispersion dimension of all HDUs in the file, i.e. a list of all PXBEG3-PXEND3 ranges.

The window start *row*, starting at 1 for the lowermost⁸ pixels on the detector, is also given in the telemetry and is stored in the FITS files as PXBEG2. The window end row is stored in PXEND2.

The scan direction of the scan mirror is from Solar West to Solar East. This is indicated by always having PXEND1 = 1. For raster observations PXBEG1 > 1, for other study types PXBEG1 = PXEND1 = 1.

PXBEG4 = 1 for all observation types. For sit-and-stare observations PXEND4 > 1, for other study types PXEND4 = PXBEG4 = 1.

4.4.1.3.4 L1 only: The BLANK keyword

The data type of a L1 HDU's data array is normally 16-bit *unsigned* integer. However, when reconstructing SHC-compressed data some pixel values may end up being negative, and the data type for SHC-compressed data is therefore always 16-bit *signed* integer. Due to this difference the value of undefined pixels (BLANK) is set to $2^{16}-1$ for unsigned integer array HDUs and $2^{15}-1$ for signed integer array HDUs.

Note that in L2 files the data arrays are of type floating point and the BLANK keyword is not present. Undefined pixels in L2 files are set to NaN.

4.4.1.3.5 Keywords describing telemetry and telemetry loss and consequences thereof

L1 and L2 files contain a collection of FITS keywords that briefly describe the completeness of the telemetry of the file as a whole, and of each of the observational HDUs.

4.4.1.3.5.1 Keywords having the same values for all observational HDUs in the file

COMPLETE: Completeness of all windows in the file combined. 'C' if complete, 'I' if incomplete.

PCT CMPL: Completeness of all windows in the file combined, in percent.

4.4.1.3.5.2 Keywords describing the telemetry of an individual HDU

NTOTPIX: The number of potentially usable pixels

NDATAPIX: The number of usable pixels excluding saturated & BLANK (L1) or NaN (L2)

NSATPIX: The number of fully saturated pixels

NLOSTPIX: The number of lost pixels due to telemetry loss

NAPRXPIX: The number of pixels with approximated values due to loss of compressed telemetry

PCT_DATA: NDATAPIX/NTOTPIX*100
PCT_SATP: NSATPIX/ NTOTPIX*100
PCT_LOST: NLOSTPIX/NTOTPIX*100
PCT_APRX: NAPRXPIX/NTOTPIX*100

4.4.1.3.5.3 L1 only: keywords describing the telemetry of an individual HDU in detail

Note that neither the keywords mentioned in this section nor the binary table extensions they are referring to are present in L2 files.

⁸ i.e. the southernmost detector pixel row in the case of no spacecraft roll

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 41 of 70

Printed copies of this document are uncontrolled

NPACKETS: the total number of packets with observational data that were prepared on-board for downlink. This number includes the total number of Data Packets of all the window's n segments, plus n if the n Final Packets contained observational data.

LOSTPKTS: the number of lost packets with observational data

LOSTBINS: the number of lost FFT bins (in the case of SHC data)

NLOSTCHK: the number of lost Final Packets (with or without observational data)

NFAILCHK: the number of lost data checksum test that have failed

NAPRXPLN: the number of approximated image plane ranges due to lost compressed telemetry

NLOSTPIX: the number of lost pixels due to lost compressed or uncompressed telemetry

NLOSTPLN: the number of lost image plane ranges due to lost compressed telemetry (or lost FFT coefficient planes for SHC data)

Sections 4.4.4 and 4.4.5 describe how the indices of lost telemetry packets, lost FFT coefficient planes, approximated image plane ranges, lost image plane ranges, and lost FFT bins are stored in binary table extensions in L1 files. Lost pixels (and lost image planes) can easily be identified by selecting pixels having the BLANK value and therefore the indices of such pixels and image planes are not stored in binary table extensions.

4.4.1.3.6 Keywords describing coordinate distortions

After a significant re-pointing or a wheel off-loading it may take tens of minutes, even hours, until the pointing of Solar Orbiter is stable. If SPICE is observing during a period of unstable spacecraft pointing it may be necessary to take the pointing instability into account when calculating the Solar X and Solar Y coordinates of the observation.

For single exposure observations CRDER1 and CRDER2 give the standard deviation of the S/C pointing in arc seconds during the exposure. For multi-exposure observations these keywords give the mean of the standard deviations of the S/C pointing. The individual standard deviations are stored in a binary table extension, see Section 4.4.4. for details on *variable keywords*.

The CWERR1 and CWERR2 keywords give the maximum absolute deviation in arc seconds from the Solar X and Solar Y coordinates calculated by Equation (1). Following [WCSDISTORTIONS], these deviations, or coordinate distortions, are stored in two separate image extension both having EXTNAME = 'WCSDVARR'. The distortions of Solar X are stored in the WCSDVARR extension having EXTVER=1, the Solar Y distortions are stored in the WCSDVARR extension having EXTVER=2.

The distortion mechanisms described in [WCSDISTORTIONS] support distortions of *pixel* coordinates that are used to calculate the world coordinates. In SPICE files, however, we use the SOLARNET mechanisms mentioned in [SSTRED] to store the distortions of the calculated Solar X and Solar Y world coordinates.

We represent the distortions according to the Lookup mechanism outlined in Section 3.4 of [WCSDISTORTIONS]. The spacecraft roll is assumed to be constant during the observation, making each of the two coordinate distortion arrays 1-dimensional, with one coordinate distortion value per exposure. See Figure 4-2 for an example of Solar X and Solar Y coordinate distortion arrays. Figure 4-3 shows the corresponding CIII raster image without and with corrected coordinates.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 42 of 70

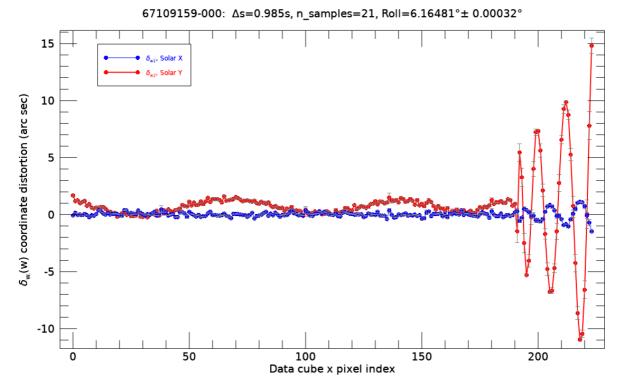


Figure 4-2: 2021-09-14, SPIOBSID 67109159: An example of Solar X and Solar Y coordinate distortions due to unusually pronounced spacecraft pointing instability. The error bars correspond to the standard deviation of the coordinate distortions during a 20 sec exposure. These standard deviations are given in the variable keywords $\tt CRDERi.$ The maximum amplitudes of the distortions are given by <code>CWERRi.</code> The duration of the raster is 1 hour 15 minutes, 224 exposures were taken. Note that the distortion correction values for Solar Y are not fluctuating around 0, but are shifted towards positive distortion. The reason for this shift is that the distortion correction at the reference pixel <code>CRPIX1=112.5</code> is by definition 0.

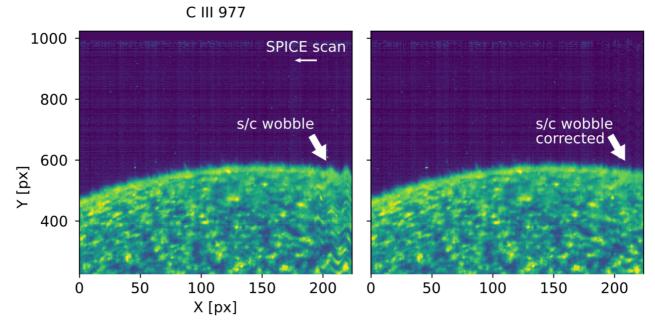


Figure 4-3: Example of a SPICE CIII raster before and after coordinate distortion correction. (G. Pelouze)

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 43 of 70

Printed copies of this document are uncontrolled

The IDL SolarSoft function wcs get coord.pro supports the SOLARNET interpretation of the Lookup mechanism that is used in SPICE FITS files9. When calculating coordinates, the distortions are automatically taken into account:

```
IDL> data = readfits(file, header, ext=0)
IDL> wcs = fitshead2wcs(header, filename=file)
IDL> corrected coordinates = wcs get coord(wcs)
```

The SPICE IDL quicklook and analysis tools [IDLANA] use wcs get coord.pro to calculate corrected coordinates.

As of January 2023, the existing WCS tools in astropy/python do not support the Lookup method for calculating coordinate distortions, nor the SOLARNET implementation of the distortion mechanisms. Python users will therefore have to calculate the Solar X and Solar Y coordinates using the existing tools, before manually adding the distortions to obtain the corrected coordinates. I.e., for slit position n:

- calculate the Solar X coordinates of all pixels along the slit and add element $\tt n$ of the distortion array stored in the WCSDVARR extension having EXTVER=1
- calculate the Solar Y coordinates of all pixels along the slit and add element n of the distortion array stored in the WCSDVARR extension having EXTVER=2

4.4.1.3.7 Keywords describing the processing steps

A set of PRXXXN keywords describes each processing step that have been applied to the data:

PRSTEPn: a description of the processing step

PRPROCn: the name of the routine performing the processing step

PRPVERn: version of the processing routine

PRPARAn: input parameters to the processing routine

PRPREFn: other relevant parameters used by or calculated by the processing routine

PRLIBNA: name of the library that contains the processing routine

PRVERnA: version of the library

Processing performed on-ground is described with the complete list of PRXXXXN keywords. Onboard processing is described by the first two keywords.

Finally, the keyword PRENVn describes the hardware and software environment of the on-ground processing. PRENVn is valid for all processing steps starting at step n, until a new PRENVn keyword is defined. However, for SPICE FITS files created by the pipeline, the processing environment is normally the same for all processing steps, and therefore only a single PRENVn keyword that is valid for all processing steps performed on ground will normally be defined.

4.4.1.3.8 Keyword giving the name(s) of the telemetry file(s)

The name of the source telemetry file is given in the keyword FILE RAW. If also a telemetry file from the preceding day is given as input to the pipeline, the value of FILE RAW is the names of the telemetry files of the preceding day and the current day, separated by a semicolon.

4.4.1.3.9 Keywords used to determine the study type: sit-and-stare or raster

 $^{^{9}~\}mbox{wcs}$ get coord.pro Version 11 (11th May 2023) and later

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 44 of 70

Printed copies of this document are uncontrolled

The pipeline uses the IORs and study definition files to determine whether a multi-exposure observation is a raster or a sit-and-stare observation. These files are only available for cruise phase and nominal mission phase observations. In order to determine the study type for commissioning phase observations, we must therefore instead use the scan mirror positions reported in the telemetry. Due to readout noise the scan mirror position values are neither constant for sit-and-stare observations nor monotonically increasing for raster observations. Therefore, the study type is determined from a linear fit of the scan mirror positions. For pipeline debugging purposes the parameters of the fit are included in the headers of commissioning observation files:

4.4.1.4 L1 HDUs with narrow-slit spectral-profile data (window type 1)

Data arrays:

SPICE narrow-slit (2", 4" or 6") spectral-profile data arrays have dimensions according to Table 4-3 below. Readout windows have a width in the dispersion direction of D = 4, 8, 16 or 32 pixels.

Study type	Dimensions
Sit-and-stare	(1,Y,D,t)
Raster	(X,Y,D,1)
Single exposure	(1, Y, D, 1)

Table 4-3: Dimensions of narrow-slit spectral-profile data arrays

4.4.1.5 L1 HDUs with dumbbell stack data (window type 2)

Note that due to technical reasons stand-alone dumbbell observations are rarely recorded, see page 26 of Section 4.

At each end of the slit in the Y direction there is an area of nominal size 30" x 30" used for making small context images, so called dumbbell or alignment windows. It is possible to downlink one or both dumbbells, but only for a single window per study. The dumbbells may be downloaded in addition to, or instead of, the spectral-profile data cube, and are included in the same FITS file as the spectral-profile data, in separate HDUs.

Data arrays:

SPICE dumbbell stack data arrays have dimensions according to Table 4-4 below.

Study type	Dimensions
Sit-and-stare	(1,32,64,t)
Raster	(X, 32, 64, 1)
Single exposure	Not applicable

Table 4-4: Dimensions of dumbbell stack data arrays

4.4.1.6 L1 HDUs with wide-slit data (window type 3)

Data array:

SPICE wide-slit (30") data arrays have dimensions according to Table 4-5 below. Readout windows have in most cases a width in the dispersion direction of D = 32 pixels.

Study type	Dimensions
Sit-and-stare	(1,Y,D,t)

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 45 of 70

Printed copies of this document are uncontrolled

Study type	Dimensions
Raster	(X,Y,D,1)
Single exposure	(1,Y,D,1)

Table 4-5: Dimensions of wide-slit data arrays

4.4.1.7 L1 HDUs with intensity-window data (window type 4)

Note that intensity-window observations are rarely recorded, see page 26 of Section 4.

An intensity-window is binned in the dispersion dimension with a binning factor equal to the width of the window. Intensity-windows are normally observed in pairs, with one window covering a spectral line, and a nearby window covering a part of the spectrum without any strong emission lines. The intensity-window data cubes are saved in separate HDUs. The value of the wavelength coordinate is the central wavelength (i.e. the midpoint between the central two pixels before binning) of the readout window.

Data array:

SPICE intensity-window data arrays have dimensions according to Table 4-6 below.

Study type	Dimensions
Sit-and-stare	Not applicable
Raster	(X,Y,1,1)
Single exposure	Not applicable

Table 4-6: Dimensions of intensity-window data arrays

If the HDU stems from an intensity-window that was defined as either a line window or a background window in the MISO planning tool, the HDU has two of the following three keywords that are not present in the HDUs of any other window type: <code>IWINTYPE</code>, and either <code>IWINBKG</code> or <code>IWINLINE</code>. HDUs storing stand-alone intensity-windows do not include any of these three keywords.

If the data of the HDU stems from a window covering an emission line the value of IWINTYPE is 'LINE'. In that case an additional keyword IWINBKG gives the HDU number of the HDU storing the data that is to be regarded as the background level.

If the data stems from a background window the value of IWINTYPE is 'BACKGROUND'. A background window may be defined as background for multiple 'LINE' windows. IWINLINE gives a comma separated list of the HDU numbers of all 'LINE' window HDUs that has this window defined as the background.

As an example, the following keywords may be present in an HDU stemming from a window covering the emission line Ne VIII 770 A:

```
EXTNAME = 'Ne VIII 770 A' / Extension name
...

WINNO = 1 / Window number (starting at 0) within this study
...

IWINTYPE = 'LINE' / This intensity-window covers an emission line

IWINBKG = 4 / HDU number (primary=0) storing background
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024

Page: 46 of 70

Printed copies of this document are uncontrolled

The following keywords may be present in the corresponding HDU with data to be used for background-subtraction from the Ne VIII 770 A line:

```
EXTNAME = 'Red wing of Ne VIII 770 A' / Extension name
...
WINNO =
...
IWINTYPE = 'BACKGROUND' / This intensity-window considered as background
IWINLINE = '0,1,2 ' / HDU numbers (primary=0) storing emission line
```

4.4.1.8 L1 HDUs with full-detector read-out data (window types 5 and 6)

It is possible to make a full-frame read-out where the full areas of both detector arrays are recorded. A full-frame read-out always consists of a single exposure¹⁰. Data from each detector array are stored in separate HDUs¹¹. Both the three narrow slits and the wide slit may be used, in the latter case the PC1 3 transformation matrix element has a non-zero value.

Data array:

SPICE full-detector read-out data arrays have dimensions according to Table 4-7 below.

Study type	Dimensions
Sit-and-stare	Not applicable
Raster	Not applicable
Single exposure	(1,1024,1024,1)

Table 4-7: Dimensions of full-detector read-out data arrays

4.4.2 Level 2 Data arrays and FITS headers

All keywords described in Section 4.4.1.3 are present in L2 files as well, with the exception of the keywords mentioned in Sections 4.4.1.3.4 and 4.4.1.3.5.3.

To include data from all pixels present in the L1 data array, the geometrically corrected L2 data arrays are by default a few pixels wider in the dispersion dimension compared to the L1 data arrays described in Section 4.4.1. The values of padded pixels are set to NaN.

To ensure that an emission line is completely covered, or to catch multiple closely spaced lines, two or more adjacent readout windows may be defined. In L2 files the data arrays of such adjacent windows are merged (concatenated) if the windows have the same binning and compression. Neither Intensity-windows nor dumbbells are merged (but neither of these window types have been used other than for a very few test runs).

If adjacent windows have been merged the L2 file will contain fewer image HDUs than the L1 file.

The metadata that describe the data array are updated to reflect the wider dispersion dimension of the merged window, and the reduced number of HDUs in the file. This window concatenation is described by a set of PRXXXXN keywords, see the 'WINDOW-CONCATENATION' processing step in Section 4.4.2.2

¹¹ SPICE is capable of transmitting full-frame data in both compressed and uncompressed format. In this case the L1 file contains *four* HDUs, *two* for each detector array, one with decompressed data and one with the uncompressed data.

¹⁰ However, it is possible to repeat full detector observations, with or without moving the scan mirror. Rasters and sit-and-stare observations may therefore be constructed also for full detector observations by combining the individual exposures that are stored in separate FITS files.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 47 of 70

Printed copies of this document are uncontrolled

Two windows may be very close without being adjacent. Due to the geometrical correction of L2 files, pixels close to the adjoining edge of two closely spaced L2 windows may originally stem from the nearby window. A future update of the calibration routines will ensure that pixels are only present in their original window.

In L2 files the spatial plate scale in the direction of the slit is the same for the two detector arrays, and a given pixel along the slit on the SW or LW detector correspond the same location on the Sun. The plate scale in the dispersion dimension is adjusted to get the same spatial plate scale in the dispersion and y dimensions for wide-slit (and dumbbell) observations.

Due to the geometrical distortion correction a single saturated L1 pixel will influence more than a single L2 pixel. In the L2 files all pixels that are influenced by one or more saturated L1 pixel are set to $_{\rm NaN}$. See Section 4.4.2.1 for information on how to retrieve estimated values for pixels that are influenced by saturation.

Note that if telemetry is lost for compressed observations, entire image planes or even full data cubes may be missing (i.e. are set to ${\tt NaN}$) in L2 files, see Sections 4.4.4.4 and 4.4.5. L1 files contain binary table extensions storing information on lost telemetry and keywords describing the contents of these extensions, see Section 4.4.1.3.5.3. Neither these extensions nor the corresponding keywords are present in L2 files.

Keywords that are present in L1 files are updated to account for e.g. calibrated data array values and merged windows.

Some keywords are modified as required by [FITSpaper]. As an example, the BLANK keyword only applies to integer data HDUs, as is the case for L1. The floating-point data HDUs in L2 files do not have a BLANK keyword, and undefined pixels are set to NaN.

L2 files contain additional keywords that are not present in L1 files:

- Keywords that describe the calibration. This includes:
 - VERS CAL, a Solar Orbiter-wide keyword giving the version of the calibration software
 - Additional sets of PRXXXXN keywords describing the L1 to L2 calibration steps, see Section 4.4.2.2.
 - RADCAL, the radiometric calibration factor as a function of dispersion pixel, see Section
 4 4 4 3
- wavecov, a comma separated list of the wavelength coverage (i.e. 'wavemin-wavemax') of all image HDUs in the file.
- Keywords that describe random and systematic errors (CRDERi and CSYERi respectively, see Table 3-8 of [METADATA])
- The keyword UCD giving the Unified Content Descriptors, e.g.:
 - UCD = 'phot.radiance; em.line'; for narrow-slit observations
 UCD = 'phot.radiance; em.UV'; for wide-slit/dumbbell observations
 The intensity unit of SPICE L2 files, given by BUNIT, is W/m2/sr/nm (narrow-slit) or W/m2/sr
 (wide-slit/dumbbell). The intensity unit is described by BTYPE, with the value 'Spectral
 Radiance' or 'Radiance' respectively.
- NWIN_ORIG, the total number of windows defined for the study in the MISO planning tool. The value will be equal to NWIN if no adjacent windows have been merged.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Page: 48 of 70

Date: 25 Oct 2024

Printed copies of this document are uncontrolled

For files with two or more merged windows the following keywords will have a different value in L2 than in L1:

- EXTNAME is based on the EXTNAMEs of the individual windows, ending with the string "(Merged)".
- NWIN is the total number of observational HDUs in the L2 file. Note that NWIN is smaller than NWIN ORIG
- WINNO is the window number in the L2 file (starting at 0)
- MISOWIN and WINTAB will have the value of the first window in the group of merged windows.
- Keywords describing the size of the windows, the pixel contents of the windows, etc.

4.4.2.1 Saturated pixels

The data arrays are corrected for geometrical distortions when the FITS file is converted from L1 to L2. The result is that the intensity of a single L1 pixel is distributed on several L2 pixels. Likewise, a given L2 pixel gets its contribution from more than a single L1 pixel. In L2 files all pixels that are influenced by saturated L1 pixels are set to Nan. However, the amount of contribution that a saturated L1 pixel has on a L2 pixel will vary greatly depending on where on the detectors the L1 pixel is located. Instead of ignoring all L2 pixels that are influenced by saturated L1 pixels, the user may want to use estimated values for those L2 pixels that are not too heavily influenced by saturation. Therefore, the L2 files contain binary extensions storing:

- The pixel coordinates of all L2 pixels that are influenced by saturated L1 pixels
- An estimate of the intensity that the influenced L2 pixels will have if all saturated L1 pixels are ignored (set to 0) during the calibration.
- The fractional contribution of saturated L1 pixels to these L2 pixels

The information in these binary tables can be used to fill in saturated pixels with estimated values instead of treating them as missing. Section 4.4.2.1.1 shows how to use the IDL <code>spice_data</code> object to fill in saturated pixels. Section 4.4.2.1.2 outlines how the information on saturated pixels is stored in the FITS file.

4.4.2.1.1 Using the IDL spice_data object to fill partially saturated pixels with estimated values

The IDL spice_data object (see [IDLANA]) makes it easy to work with saturated pixels. We create an object:

IDL> o=spice data(file)

When we extract the data for a window that has saturated pixels we get a message like this:

IDL> d0=o->get window data(winno)

| This window contains 217 pixels set to NaN due to contribution from saturated pixels. | Set keyword MAX_SATURATION_FRACTION to a value between 0 and 1 to include pixels | up to the given fractional contribution from saturated pixels. | The value of filled in pixels will be corrected for the "filling factor" by upscaling | the pixel value to value=value/(1-fractional_contribution_from_saturated_pixels) | Setting MAX_SATURATION_FRACTION to 1 will set all fully saturated pixels to max(data) |

A zoom-in of a line profile with saturated pixels is displayed in the left panel of Figure 4-4.

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 49 of 70

Printed copies of this document are uncontrolled

To fill in pixels that have a contribution from saturated L1 pixels less than e.g. 30% we set MAX_SATURATION_FRACTION=0.3 when extracting the window data (also see the middle panel of Figure 4-4):

To fill *all* pixel that are influenced by saturated with estimated values, and set pixels that get all their contribution from saturated L1 pixels to the maximum value of the data array (see right panel of Figure 4-4) we set MAX SATURATION FRACTION=1:

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 50 of 70

Printed copies of this document are uncontrolled

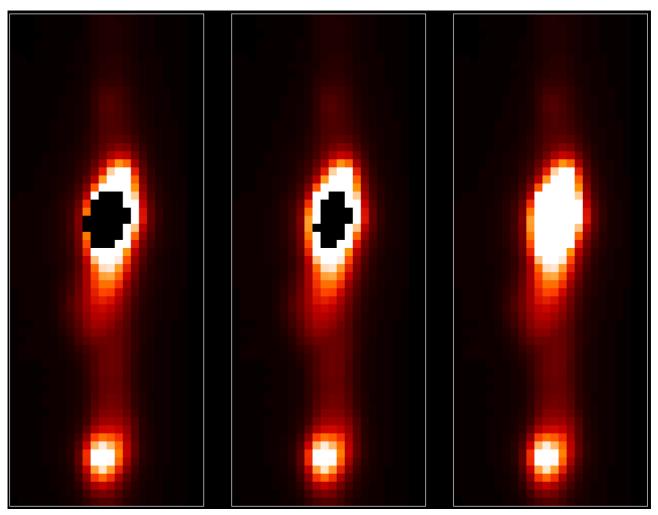
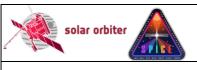


Figure 4-4: Left: all L2 pixels with a contribution from saturated L1 pixels are set to NaN. Middle: L2 pixels with less than 30% contribution from saturated L1 pixels are filled in with estimated values. Right: all L2 pixels that are not fully saturated are filled in with estimated values, fully saturated L2 pixels are set to the maximum value of the L2 data array.

4.4.2.1.2 Extracting information on saturated pixels from the binary header extensions


SPICE L2 files contain pixel lists flagging individual pixels that are influenced by saturation. We use the SOLARNET implementation of the pixel list FITS standard [S-META].

If an HDU has saturated pixels the EXTNAME of the binary table extension storing the information on saturated pixels for this HDU can be extracted from the PIXLISTS keyword. As an example, if PIXLISTS has the value:

PIXLISTS= 'SATPIXLIST[Ly-g-CIII]; ESTIMATED, SATPIX CONTRIBUTION' /

then the EXTNAME of the binary table extension is SATPIXLIST[Ly-g-CIII].

The SPICE SATPIXLIST binary table extensions always contains 6 columns, each column having one row for each flagged L2 pixel. The first 4 columns with TTYPEn='DIMENSIONn' store the n pixel indices of the flagged pixels. The binary table column 'ESTIMATED' contains the estimated values of L2 pixels when saturated L1 pixels were set to 0 during the calibration. The binary table column SATPIX CONTRIBUTION contains the fraction of contribution from saturated L1 pixels.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 51 of 70

Printed copies of this document are uncontrolled

4.4.2.2 Keywords describing the individual L1 to L2 calibration steps

As mentioned in Section 4.4.1.3.7 the individual processing steps are described by a set of PRxxxxn keywords:

PRSTEPn: a description of the processing step

PRPROCn: the name of the routine performing the processing step

PRPVERn: version of the processing routine

PRPARAn: input parameters to the processing routine

PRPREFn: other relevant parameters used by or calculated by the processing routine

PRLIBNA: name of the library that contains the processing routine

PRVERnA: version of the library

PRENVn: hardware and software environment of the on-ground processing, valid for processing step n and for all remaining steps

Below is an example of a collection of PRXXXXN keywords used to describe the processing of a file. For completeness the list includes processing steps performed to create the parent L1 file (in this example, steps 1 through 6), and the steps performed to calibrate the L1 file to L2 (steps 7 through 12). In Section 4.4.2.2.1 we give some additional comments on the values that two of these keywords may take.

Note that not all files include the same processing steps, i.e. the user can't assume that e.g. step 9 will always be burn-in correction.

```
PRSTEP1 = 'DISPERSION-BINNING' / Type of processing, step 1
PRPROC1 = 'Dispersion Binning (On-board)' / Name of procedure, step 1
PRSTEP2 = 'COMPRESSION'
                              / Type of processing, step 2
PRPROC2 = 'JPEG Compression (On-board)' / Name of procedure, step 2
PRSTEP3 = 'TELEMETRY-PARSING' / XML decoding, decompression if applicable, etc
PRPROC3 = 'spice_process_telemetry.pro' / Name of procedure, step 3
PRPVER3 = '03.07.00' / Version of procedure, step 3
PRLIB3A = 'uio-spice-pipeline/telemetry parsing' / Library containing PRPROC3
PRVER3A = '4681 '
                       / UiO SVN revision number of PRLIB3A (2024-08-07)
PRSTEP4 = 'PIXEL-LEVEL-OFFSET-SUBTRACTION' / Type of processing, step 4
PRPROC4 = 'spice_file_to_oslo_fits.pro' / Name of procedure, step 4
PRPVER4 = '4633
                             / UiO SVN revision number of PRPROC4 (2024-07-03)
PRPREF4 = 'pixel level offset = 200' / [adu] Offset subtracted from data values
PRLIB4A = 'uio-spice-pipeline' / Software library containing PRPROC4
PRVER4A = '4777
                              / UiO SVN revision number of PRLIB4 (2024-09-06)
PRSTEP5 = 'SPATIAL-COORDINATE-CALCULATION' / Type of processing
PRPROC5 = 'get sunspice hpc point.pro' / Proc. returning s/c helioproj. coords
                        60067 / Mod. julday of PRPROC5 (2023-05-03)
PRPVER5 =
PRPARA5 = 'correction = "lt+s"' / Correct for velocity aberration
COMMENT
          ABERRATION CORRECTION APPLIED TO THE S/C COORDINATES
COMMENT
COMMENT
PRREF5 = 'spk="solo ANC soc-orbit-stp 20200210-20301120 327 V1 00367 V01.bsp"&'
CONTINUE ', spk date = "2024-08-21"
CONTINUE ',ck="solo ANC soc-flown-att 20240810T123827-20240811T195643 V01.bc"&'
CONTINUE
          ',ck date = "2024-08-12"
          '' / Name and date of loaded ephemeris (spk) and attitude (ck) files
CONTINUE
```

SPICEFITS

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 52 of 70

```
PRLIB5A = '$SSW/packages/sunspice/idl/' / Software library containing PRPROC5
PRVER5A =
                         60345 / Mod. julday of PRLIB5A (2024-02-05)
PRSTEP6 = 'SPATIAL-COORDINATE-CORRECTION' / Type of processing, step 6
PRPROC6 = 'correct_spice_offset_relative_to_spacecraft.pro' / Name of procedure,
PRPVER6 = '3.0
                               / Version of procedure, step 6
PRREF6 = 'delta_instrument_x = -79,
CONTINUE 'delta_instrument_y = -45
CONTINUE '' / [arcsec] constant SPICE vs spacecraft offset
                                                                               ړ ۱
PRLIB6A = 'uio-spice-pipeline' / Software library containing PRPROC6
PRVER6A = '4777
                              / UiO SVN revision number of PRLIB6A (2024-09-06)
PRSTEP7 = 'DARK-SUBTRACTION
PRPROC7 = 'spice prep_dark_offset_correction.pro
PRPVER7 = '3.1
PRREF7 = 'dark = "solo L1 spice-n-exp 20240811T175443 V22 268435652-000.fits"'
PRLIB7A = 'uio-spice-pipeline/calibration
PRVER7A = '4763
                        / Version of software library (2024-09-03)
PRSTEP8 = 'FLATFIELDING
PRPROC8 = 'spice prep_flat_field_correction.pro
PRPVER8 = '1.6
PRREF8 = 'flat = "ground-calibration flat field"
PRLIB8A = 'uio-spice-pipeline/calibration
PRVER8A = '4763
                              / Version of software library (2024-09-03)
PRSTEP9 = 'BURN-IN-CORRECTION
PRPROC9 = 'spice_prep_burnin_correction.pro
PRPVER9 = '1.4
PRREF9 = 'burn in correction data version = "2024-08-28",
CONTINUE 'burn in correction defined for this hdu = 1' / Additional info, step
PRLIB9A = 'uio-spice-pipeline/calibration
PRVER9A = '4763
                              / Version of software library (2024-09-03)
PRSTEP10= 'SPATIAL-SPECTRAL-DISTORTION-CORRECTION
PRPROC10= 'spice_prep_distortion_correction.pro
PRPVER10= '4.0
PRLIB10A= 'uio-spice-pipeline/calibration
PRVER10A= '4763
                        / Version of software library (2024-09-03)
PRREF10 = 'distortion correction matrix version = "2024-07-04",
CONTINUE 'lambda vs temperature correction version = "2024-04-18"
CONTINUE '' / Additional info, step 10
PRSTEP11= 'RADIOMETRIC-CALIBRATION
PRPROC11= 'spice prep_radiometric_calibration.pro
PRPVER11= '3.0
                                                                               ٤'
PRREF11 = 'method = "based on comparison to QS SUMER spectrum",
CONTINUE 'response_file_version = "2024-08-28",
                                                                               & '
CONTINUE 'interpolated_lw_response=0.33345191
                                                                               &'
CONTINUE '' / Additional info, step 11
PRLIB11A= 'uio-spice-pipeline/calibration
PRVER11A= '4763
                               / Version of software library (2024-09-03)
PRSTEP12= 'WINDOW-CONCATENATION' / Type of processing, step 12
PRPROC12= 'spice prep.pro' / Name of procedure, step 12
PRPVER12= '4777
                               / Version of procedure, step 12
             WINNOs of concatenated windows = [8,9,10,11],
                                                                               ٠ &
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 53 of 70

Printed copies of this document are uncontrolled

```
CONTINUE 'WINTABIDs of concatenated windows = [140,147,152,162],
                                                                                       ړ ٠
CONTINUE 'MISOWINS_of_concatenated_windows = [2988,2989,2990,2991],
CONTINUE 'EXTNAMEs_of_concatenated_windows = "Ly-gamma-CIII group bin (1/4),&'
CONTINUE 'Ly-gamma-\overline{\text{CIII}} group bin (\overline{2}/4), Ly-gamma-CIII group bin (3/4), Ly-gamm&'
CONTINUE
           'a-CIII group bin (4/4)"
                                                               &' / Additional info,
CONTINUE '' / step 12
PRLIB12A= 'uio-spice-pipeline/calibration' / Software library containing PRPROC1
PRVER12A= '4763
                        / Version of software library (2024-09-03)
PRENV3 = ' Kernel: Linux
                                                                                       ړ ٠
CONTINUE ' Kernel release number: 5.14.0-362.24.1.el9_3.x86_64
CONTINUE ' Architecture: x86_64
                                                                                       ړ ٠
                                                                                       ړ ٠
CONTINUE ' Host name: astro-sdc-fs2.uio.no
CONTINUE ' OS: Red Hat Enterprise Linux 9.4 (Plow)
                                                                                       ٠ &
                                                                                       ړ ٠
                                                                                       ٤ ٠
CONTINUE ' CPU: Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
CONTINUE ' IDL 8.9.0 (Jun 07 2023 (452795)), memory bits: 64, file offset bi&'
                       ' / Hardware and software
CONTINUE 'ts: 64
```

4.4.2.2.1 PRPARAn and PRREFn keywords

The PRPARAn keywords describe the input parameters to the processing routine performing the processing step.

The PRREFn keywords give other relevant information relating to the processing step, e.g. dates of input files, the file name of the dark map, etc. The format of a PRREFn keyword is a comma separated list of pairs of parameter names and parameter values. The parameter names will vary depending on what kind of processing step they are describing. As an example, if a combined dark ([MULTIDARK]) was subtracted, the corresponding PRREFn keyword contains a comma separated list with the parameter 'dark' followed by the name of the dark, the parameter 'constituent_darks' followed by the SPIOBSID-RASTERNOS of the darks that were used to create the combined dark, and the parameter 'constituent_darks_date' followed by the observation date of these darks:

```
PRREF6 = 'dark = "combined dark 20s ID1 V01",
                                                                                 & '
CONTINUE 'constituent darks = "218103845-000,
                                                                                 ړ ۱
CONTINUE '218103845-001,
                                                                                 ٠ &
                                                                                 ٤ '
CONTINUE '218103845-002,
                                                                                 ٤ '
CONTINUE '218103845-003,
CONTINUE '218103845-004,
                                                                                 ٤ ٠
                                                                                 ٤ ٠
CONTINUE '218103845-005,
CONTINUE '218103845-006",
                                                                                 ٤ '
CONTINUE 'constituent darks date = "2023-09-29"
CONTINUE '' / Additional info, step 6
```

Note that all observational HDUs of L2 files will include a description of the burn-in correction processing step. However, the burn-in data file contains burn-in corrections only for sections of the detectors where strong lines have significantly reduced the detector's sensitivity. Whether the burn-in data file contains information that allowed for a correction of the HDU in question is given by the PRREFn parameter burn_in_correction_defined_for_this_line. In the header example above the value of this parameter is 1, i.e. this line has been corrected for burn-in. Finally, if one or more windows that make up a merged window are corrected for burn-in, the merged window is also marked as corrected for burn-in.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Page: 54 of 70

Date: 25 Oct 2024

Printed copies of this document are uncontrolled

The sensitivity of the SPICE detectors decreases with time. The radiometric calibration includes a correction for this time-dependent responsivity. From a table of estimated response values, we interpolate a single response correction value for each detector for the DATE-AVG of the observation. This factor is given by the PRREFN parameter interpolated lw response.

4.4.3 Level 3 Data arrays and FITS headers

The pipeline is as of September 2024 creating simplified L3 P FITS files containing Gaussian fit parameters (see [IDLANA]). Each observational HDU in the input L2 file leads to two L3 P HDUs. The first HDU contains the Gaussian fit parameters as described in Appendix IX of [S-META]. The second HDU contains the header of the parent L2 HDU.

The L3 P file contains a reference to the parent L2 file. The user should store the L2 and L3 P files in the file structure recommended by the UiO team, e.g. by downloading SPICE data using the IDL routine <code>spice_wget_files</code>. Analysis tools will then be able to restore the data array that was used for the line fitting. This enables the user to manually modify the automatically determined initial values of the fit and re-run the line fitting with the code of the user's choice. The line fitting routine must use the parameterisation used by <code>cfit.pro</code> (see [CFIT]) but may of course be written in other programming languages than IDL. However, for IDL users manipulating L3 files is especially convenient:

- use spice xfiles to select the file you want to analyse
- click the "copy window to user file" button in the "LEVEL 3 official" column
- click the "View/Edit window" button in the "LEVEL 3 user" column to start xcfit block

To be implemented: based on the fitted Gaussian line parameters, secondary derived parameters can be estimated:

- Abundances
- o FIP bias
- Density
- Temperature

The format of L3 files including secondary derived parameters is not yet finalised.

4.4.3.1 Keywords describing individual L2 to L3 processing steps

As outlined in Section 4.4.2.2 the individual processing steps are described using the PRXXXN keywords. When processing L2 files to L3 additional processing steps are described: finding the peak(s) in the spectrum to which Gaussian fits were made, and the actual line fitting:

```
PRSTEP11= 'PEAK-FINDING'
                                  Processing step type
PRPROC11= 'spice gt peaks'
                                  Name of procedure performing PRSTEP11
                             1 / Version of procedure PRPROC11
PRPVER11=
PRLIB11A= 'solarsoft/so/spice/idl/quicklook' / Software library containing PRPR
PRSTEP12= 'LINE-FITTING'
                               / Processing step type
PRPROC12= 'spice data::create 13 file' / Name of procedure performing PRSTEP12
                             \overline{5} / Version of procedure PRPROC12
PRPVER12=
                                                                               ٤ ٠
PRPARA12= 'LINE LIST = 0,
                                                                               & '
CONTINUE 'MASKING = 1,
                   = 1,
                                                                               & '
CONTINUE 'FITTING
CONTINUE 'POSITION = 0,
                                                                               ٤ '
CONTINUE 'VELOCITY = -999,
CONTINUE 'POSSIBLE MANUAL EDITING = 0' / Parameters for PRPROC12
PRLIB12A= 'solarsoft/so/spice/idl/quicklook' / Software library containing PRPR
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 55 of 70

Printed copies of this document are uncontrolled

In future L3 files, the calculation of secondary derived data products will be described by e.g.:

```
PRSTEP9 = 'ABUNDANCE-ESTIMATION' / Processing step type 9
                            0.32 / Version of procedure PRPROC9
PRPVER9 =
PRPROC9 = 'spice abundances.pro' / Name of procedure performing PRSTEP9
PRSTEP10= 'FIP-BIAS-ESTIMATION' / Processing step type 10
                             1.0 / Version of procedure PRPROC10
PRPVER10=
PRPROC10= 'spice fip bias.pro'
                                / Name of procedure performing PRSTEP10
PRSTEP11= 'DENSITY-ESTIMATION'
                                / Processing step type 11
                               2 / Version of procedure PRPROC11
PRPVER11=
PRPROC11= 'spice densities.pro' / Name of procedure performing PRSTEP11
PRSTEP12= 'TEMPERATURE-ESTIMATION'/ Processing step type 12
                             0.1 / Version of procedure PRPROC12
PRPROC12= 'spice temperatures.pro'/ Name of procedure performing PRSTEP12
```

4.4.4 Storing variable keyword values in binary table extensions

Some SPICE FITS keywords may have multiple values. Such keywords have either:

- one value per exposure: acquisition times, mirror positions, and temperatures, see Section 4.4.4.1, or
- one value per segment: voltages, see Section 4.4.4.2, or
- one value per dispersion pixel: the radiometric calibration factor that converts the intensities in Level 2 files to counts, see Section 4.4.4.3, or
- L1 only: values that are not directly linked to individual exposures or other dimensions of the data cube: lost telemetry packet indices and lost FFT Bin indices, see Section 4.4.4.4.

In all cases we use the *variable-keyword mechanism* outlined in Appendix I of [S-META] (see http://sdc.uio.no/open/solarnet/ for the latest version) to store the individual values of variable keywords in binary table extensions.

4.4.4.1 Variable keywords with one value per exposure: times, mirror positions, and temperatures (L1 and L2)

The acquisition time (OBT), scan mirror position and 4 instrument temperatures are recorded for each exposure of a SPICE observation. For single exposure observations, the values of these measurements are stored in the FITS keywords TIMAQOBT, MIRRPOS, \texttt{TN}_FOCUS , \texttt{TN}_MIRR , \texttt{TN}_SW , and \texttt{TN}_LW , and the temperatures converted from data numbers to degrees Celsius in \texttt{T}_FOCUS , \texttt{T}_MIRR , \texttt{T}_SW , and \texttt{T}_LW . In L1+ FITS files, TIMAQUTC stores the acquisition time converted to UTC. For multi exposure observations, these keywords hold the *average* values, and the *individual values* of each keyword, i.e. one value per exposure, are stored in a binary table extension using the variable-keyword mechanism.

In the header of a SPICE observational HDU that uses the variable-keyword mechanism, the VAR KEYS keyword always have the following value:

```
VAR_KEYS= 'VARIABLE_KEYWORDS; TIMAQOBT, MIRRPOS, TN_FOCUS, TN_MIRR, TN_SW, TN_LW', &'CONTINUE 'T FOCUS, T MIRR, T SW, T LW, TIMAQUTC'/ Variable keywords
```

This means that in the binary table extension <code>VARIABLE_KEYWORDS</code>, the individual values of the keywords <code>TIMAQOBT</code>, <code>MIRRPOS</code>, <code>TN_XXXXX</code>, <code>T_XXXXX</code>, and <code>TIMAQUTC</code> are stored in columns with <code>TTYPEn</code> equal to the keyword names. Following Appendix I-d of [S-META], the binary table

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 56 of 70

Printed copies of this document are uncontrolled

columns and the referring HDU are to be associated pixel-by-pixel, since the \mathtt{WCSNn} keywords are set to 'PIXEL-TO-PIXEL'. The dimensions of the value columns, given by \mathtt{TDIMn} , are (1,1,1,NAXIS4), the singular dimensions signalling that there is one value per exposure that is valid for all (x,y,d) pixels for that exposure.

Below is an excerpt of such a binary table extension header, including column specific keywords that define the columns storing the individual TIMAQOBT and TN FOCUS values.

```
XTENSION= 'BINTABLE'
                                               / Written by IDL: Mon Sep 25 12:03:41 2017
EXTNAME = 'VARIABLE KEYWORDS' / Extension name
\verb|WCSN1| = "PIXEL-TO-PIXEL" / Value column/referring HDU association type|
TFORM1 = '64D ' / Real*8 (double precision)

TTYPE1 = 'TIMAQOBT' / [OBT] Start time of data acqu.

TDIM1 = '(1,1,1,64)' / Array dimensions for column 1

TUNIT1 = ' / Units of column 1
                                             / [OBT] Start time of data acquisition
\texttt{TDMIN1} = 481295089.350 / \texttt{Minimum} \ \texttt{value} \ \texttt{in} \ \texttt{column} \ \texttt{1} \texttt{TDMAX1} = 481295146.051 / \texttt{Maximum} \ \texttt{value} \ \texttt{in} \ \texttt{column} \ \texttt{1}
TDESC1 = 'Variable values for TIMAQOBT' / Axis labels for column 1
WCSN3 = 'PIXEL-TO-PIXEL'  / Value column/referring HDU association type
TFORM3 = '64I '  / Unsigned Integer*2 (short integer)
TTYPE3 = 'TN_FOCUS'  / [adu] SFM focus adu temperature
TDIM3 = '(1,1,1,64)'  / Array dimensions for column 3
                                           / Array dimensions for column 3
TUNIT1 = ' '
                                              / Units of column 3
TSCAL3 =
                                          1 / Scale parameter for column 3
TZERO3 =
                                      32768 / Zero offset for column 3
TDMIN3 =
                                         846 / Minimum value in column 3
TDMAX3 =
                                         871 / Maximum value in column 3
TDESC3 = 'Variable values for TN FOCUS' / Axis labels for column 3
```

4.4.4.2 Variable keywords with one value per segment: voltages (L1 and L2)

4 instrument voltages per segment are downlinked in the science telemetry. For single-segment observations the raw values of these measurements are stored in the FITS keywords <code>VN_MCPSW</code>, <code>VN_MCPLW</code>, <code>VN_GAPSW</code>, and <code>VN_GAPLW</code>, and the voltages converted from data numbers to Volt in <code>V_MCPSW</code>, <code>V_MCPLW</code>, <code>V_GAPSW</code>, and <code>V_GAPLW</code>. For multi-segment observations these keywords hold the average values, and the individual values for each keyword, i.e. one value per segment, are stored in the same binary table extension described in the previous Section.

In the header of a SPICE observational HDU stemming from a multi-segment observation, the VAR KEYS keyword have the following value:

```
VAR_KEYS= 'VARIABLE_KEYWORDS;TIMAQOBT,MIRRPOS,TN_FOCUS,TN_GRAT,TN_SW,TN_LW,T_F&'
CONTINUE 'OCUS,T_GRAT,T_SW,T_LW,VN_MCPSW,VN_MCPLW,VN_GAPSW,VN_GAPLW,V_MCPSW,V&'
CONTINUE '_MCPLW,V_GAPSW,V_GAPLW,TIMAQUTC' / Variable keywords
```

Below is an excerpt of the header of the 'VARIABLE_KEYWORDS' binary table extension, including column specific keywords that define the column storing the individual VN_MCPSW values, one value for each segment.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024

Page: 57 of 70

Printed copies of this document are uncontrolled

4.4.4.3 Variable keyword with one value per lambda pixel: radiometric calibration factor (L2)

In the Level 1 to Level 2 calibration the photon counts are converted to physical intensity units. In order to get back the counts from the Level 2 intensity the variable keyword RADCAL should be applied to the Level 2 data.

In the header of a Level 2 observational HDU the RADCAL keyword gives the mean radiometric conversion factor of the window. The individual values of the conversion factor are stored in the binary table extension VARIABLE_KEYWORDS. To retrieve the counts the Level 2 data array is multiplied with the conversion factor array values:

```
FOR lam=0,n lam-1 DO counts[*,*,lam,*] = L2 int[*,*,lam,*]*radcal array[lam]
```

The binary table column storing the individual RADCAL values for a given observational HDU is named RADCAL followed by a tag enclosed by square brackets. This tag equals the EXTNAME of the observational HDU, possibly shortened in order to make the length of the string RADCAL [tag] shorter than 68 characters.

As an example, the value of the VAR KEYS keyword of an observational HDU may be:

```
VAR_KEYS='VARIABLE_KEYWORDS; TIMAQOBT, MIRRPOS, TN_FOCUS, TN_GRAT, TN_SW, TN_LW, T_F&'
CONTINUE'OCUS, T_GRAT, T_SW, T_LW, VN_MCPSW, VN_MCPLW, VN_GAPSW, VN_GAPLW, V_MCPSW, V&'
CONTINUE '_MCPLW, V_GAPSW, V_GAPLW, TIMAQUTC, CRDER1, CRDER2, RADCAL[O III 703 / Mg&'
CONTINUE ' IX 706 (Merged)]
```

The relevant part of the header of the binary table extension 'VARIABLE KEYWORDS' may then be:

4.4.4.4 Variable keywords describing lost telemetry packets and lost FFT Bins (L1)

In L1 files, if telemetry packets containing observational data are lost the packet indices (starting at 0 for the first data packet) are stored in the binary table extension with name 'LOST_TELEMETRY'. Note that this extension is not present in L2 and L3 FITS files. Instead, the user should refer to the

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 58 of 70

Printed copies of this document are uncontrolled

keywords described in Sections 4.4.1.3.5.1 and 4.4.1.3.5.2 for an overview of the telemetry completeness.

The name of the binary table column storing the indices of the lost packets is 'LOSTPKTS', followed by a tag giving the EXTNAME of the observational HDU that uses the variable-keyword mechanism (the referring HDU). The lost packet indices are stored primarily for pipeline debugging purposes.

Below is an excerpt of the header of a 'LOST_TELEMETRY' binary table extension of a L1 file, including keywords that define the column storing the individual lost packet indices:

The value of the VAR_KEYS keyword of the referring HDU contains the binary table extension name and the column name:

```
VAR_KEYS= 'VARIABLE_KEYWORDS;TIMAQOBT,MIRRPOS,TN_FOCUS,TN_GRAT,TN_SW,TN_LW,T_F&'CONTINUE 'OCUS,T_GRAT,T_SW,T_LW,TIMAQUTC, &'CONTINUE 'LOST_TELEMETRY;LOSTPKTS[WINDOW0_724.05A]' / Variable keywords
```

As described in [SPICELOST] the implications of lost telemetry packets in the case of SHC data highly depends on how many and which FFT Bins are lost. This information is therefore stored in the FITS files in order to help the advanced user to determine the degree of degradation of the approximated data cube. An additional binary table column storing the lost FFT Bin indices is added to the 'LOST_TELEMETRY' binary table extension. The name of this column is 'LOSTBINS' plus a tag with the EXTNAME of the referring HDU.

L1 files may contain data cubes that are reconstructed from incomplete SHC telemetry, but in the L2 and L3 files produced by the Science Data Pipeline all pixels in such cubes are set to $_{\rm NaN}$. However, the user may choose to keep incomplete data cubes when running the L1 to L2 calibration routines manually and use the information in the $_{\rm LOSTBINS}$ column when interpreting the data.

Below is an excerpt of the header of a 'LOST_TELEMETRY' binary table extension, including keywords that define the column storing the individual lost FFT Bin indices:

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 59 of 70

Printed copies of this document are uncontrolled

```
TDMAX2 = 31 / Maximum value in column 2
TDESC2 = 'Indices of lost FFT Bins' / Axis labels for column 2
```

The VAR_KEYS keyword of the referring HDU contains the binary table extension name and the column name:

```
VAR_KEYS= 'VARIABLE_KEYWORDS;TIMAQOBT,MIRRPOS,TN_FOCUS,TN_GRAT,TN_SW,TN_LW,T_F&'
CONTINUE 'OCUS,T_GRAT,T_SW,T_LW,TIMAQUTC, &'
CONTINUE 'LOST_TELEMETRY;LOSTPKTS[WINDOW0_724.05A],LOSTBINS[WINDOW0_724.05A]&'
//
CONTINUE '' / Variable keywords
```

The referring HDU contains representative scalar values of variable keyword (see Appendix I of [S-META]). The representative scalar values of LOSTPKTS and LOSTBINS are the number of lost telemetry packets and the number of lost FFT Bins respectively:

```
LOSTPKTS = 3 / Number of lost packets w/data, variable keyword

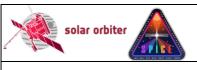
LOSTBINS = 8 / Number of lost FFT bins, variable keyword
```

4.4.5 Flagging image planes with approximated or missing values due to lost compressed telemetry using binary table pixel list (L1)

As described in [SPICELOST] it is possible to reconstruct a data cube in the case of lost telemetry, even if the data is compressed. However, one or more X-Y or dispersion-Y image planes of the data cube may in such cases be lost or have approximated values, depending on the file level, which kind of compression was applied, and which telemetry packets were lost.

If a lost telemetry packet contained JPEG header information it is not possible to decompress the JPEG image, and the entire image plane is lost. Decompression is possible if a missing telemetry packet did *not* contain JPEG header information, but the resulting values will be approximated. In such cases L1 files contain the approximated values, but in L2 and L3 files all pixels affected by telemetry loss are set to NaN.

If compressed telemetry packets are missing from a multi-segment observation, then ranges of image planes may be set to $_{\mathrm{NaN}}$, or have approximated values (L1 only). Each image plane range corresponds to an image plane of a single segment. Flagging of image plane ranges may also be applied for compressed full-detector readouts. For such observations each detector array is split into 16 Lambda-Y regions of 64x1024 pixels that are JPEG compressed on-board separately.


Note that for technical reasons the flagging of lost image plane ranges in L1 files described below currently does *not* work if *all* packets of a segment are missing. However, the L1+ FITS keywords mentioned in Sections 4.4.1.3.5.1 and 4.4.1.3.5.2 are correctly set even when entire segments are missing.

In L1 files, we use the pixel list mechanism described in Appendix II-a of [S-META] to flag image planes ranges that have approximated values due to missing compressed telemetry.

For every observational HDU that uses the pixel list mechanism there is a corresponding binary table extension containing a single pixel list where the vertices of approximated or lost image plane ranges are stored. The name of these binary table extensions are 'APRXPLNPIXLIST' and 'LOSTPLNPIXLIST' respectively, plus a tag with the EXTNAME of the referring HDU. In L2 and L3

SPICEFITS

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Page: 60 of 70

Date: 25 Oct 2024

Printed copies of this document are uncontrolled

files, pixels corresponding to L1 Image plane ranges that are defined in an 'APRXPLNPIXLIST' extension are set to NaN. In the future the advanced user will be able to run the Level 1 to Level 2 calibration routines manually with an option to retain approximated pixel values in L2 files.

In the header of the L1 observational HDU the names of the any pixel list binary table extensions are given by PIXLISTS. NLOSTPLN and NAPRXPLN give the total number of lost or approximated image plane ranges in the L1 data cube.

As an example, we consider an actual full-detector JPEG compressed observation obtained in March 2021. A telemetry packet belonging to the third Lambda-Y JPEG of the Long Wavelength detector never made it to the ground, leading to approximated pixel values. The corresponding range of the full LW Lambda-Y image plane is flagged by the pixel list binary table by the following two rows:

	DIMENSION1	DIMENSION2	DIMENSION3	DIMENSION4	PIXTYPE
Row 1	1	1	65	1	1
Row 2	1	1024	128	1	2

An excerpt of the header of the L1 pixel list binary table extension looks like this:

```
XTENSION= 'BINTABLE'
                                     / Written by IDL: Wed Sep 29 13:20:51 2021
TFIELDS =
                                  5 / Number of columns
EXTNAME = 'APRXPLNPIXLIST[Full LW 4:1 Focal Lossy]' / Extension name
             | Column 1 specific keywords |
             _____
TFORM1 = '1I ' / Integer*2 (short integer)
TTYPE1 = 'DIMENSION1' / Pixel indices dimension 1
TCTYP1 = 'PIXEL ' / Indicates that column 1 is a pixel index
TPC1_1 = 1 / Indicates that column 1 is a pixel index
TUNIT1 = '
                                  / Units of column 1
TDMIN1 =
                                 1 / Minimum value in column 1
TDMIN1 = TDMAX1 =
                                  1 / Maximum value in column 1
TDESC1 = 'Lower Left/Upper Right pixel indices of 1 approximated Lambda-Y ima&'
CONTINUE 'ge plane ranges due to loss of compressed telemetry packets \&' / Axis
CONTINUE '' / labels for column 1
             | Column 2 specific keywords |
             _____
TFORM2 = '1I ' / Integer*2 (short integer)
TFORM2 = '11 / Integer 2 (one) = 1000 / TTYPE2 = 'DIMENSION2' / Pixel indices dimension 2

TCTYP2 = 'PIXEL ' / Indicates that column 2 is a pixel index

TPC2_2 = 1 / Indicates that column 2 is a pixel index
                             / Units of COlumn 2
1 / Minimum value in column 2
TUNIT2 = '
TDMIN2 =
                      1024 / Maximum value in column 2
TDMAX2 =
TDESC2 = 'Lower Left/Upper Right pixel indices of 1 approximated Lambda-Y ima&'
CONTINUE 'ge plane ranges due to loss of compressed telemetry packets&' / Axis
```


Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 61 of 70

Printed copies of this document are uncontrolled

```
CONTINUE '' / labels for column 2
            | Column 3 specific keywords |
TFORM3 = '1I ' / Integer*2 (short integer)
TTYPE3 = 'DIMENSION3' / Pixel indices dimension 3
TCTYP3 = 'PIXEL ' / Indicates that column 3 is a pixel index
                           1 / Indicates that column 3 is a pixel index / Units of column 3
TPC3 3 =
TUNIT3 = '
TDMIN3
                             65 / Minimum value in column 3
                    128 / Maximum value in column 3
TDMAX3 =
TDESC3 = 'Lower Left/Upper Right pixel indices of 1 approximated Lambda-Y ima&'
CONTINUE 'ge plane ranges due to loss of compressed telemetry packets&' / Axis
CONTINUE '' / labels for column 3
            | Column 4 specific keywords |
           _____
TFORM4 = '1I ' / Integer*2 (short integer)

TTYPE4 = 'DIMENSION4' / Pixel indices dimension 4

TCTYP4 = 'PIXEL ' / Indicates that column 4 is a pixel index
                         1 / Indicates that column 4 is a pixel index / Units of column 4
TPC4 4 =
TUNIT4 = '
                              / Units of column 4
TDMIN4 =
                              1 / Minimum value in column 4
TDMAX4 =
                              1 / Maximum value in column 4
TDESC4 = 'Lower Left/Upper Right pixel indices of 1 approximated Lambda-Y ima&'
CONTINUE 'ge plane ranges due to loss of compressed telemetry packets&' / Axis
CONTINUE '' / labels for column 4
            | Column 5 specific keywords |
TFORM5 = '1I '
                               / Integer*2 (short integer)
                              / Pixel type
/ Units of column 5
TTYPE5 = 'PIXTYPE '
TUNIT5 = ' '
                             1 / Minimum value in column 5
TDMIN5 =
TDMAX5 =
                             2 / Maximum value in column 5
TDESC5 = 'Pixel indices types: 1 = lower left corner indices, 2 = upper right&'
CONTINUE ' corner indices' / Axis labels for column 5
            | File and study identifiers |
            _____
FILENAME= 'solo L2 spice-n-exp 20210322T033925 V06 50331861-018.fits' / Filename
```

Note that for SHC data *all* image planes stemming from a single segment are approximated if telemetry packets with observational data are lost. The amount of approximation may be estimated using the variable L1 keyword LOSTBINS described in Section 4.4.4.4.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 62 of 70

 Ref: SPICE-UIO-DPDD-0002
 Issue: 2.1

 Date: 25 Oct 2024
 Page: 63 of 70

Printed copies of this document are uncontrolled

APPENDIX A SPICE DATA PRODUCTS MATRIX

A FITS file may contain different types of HDUs/data products. Each HDU type may occur in files with a number of different combinations of descriptor elements.

L1 and L2:

Table 4-8 lists all possible L1 and L2 data products, and the file descriptors that a FITS file containing such a product may have. The overwhelming majority of Science observations recorded the first 3 years of the mission are n-ras, with a few n-sit and fewer still w-sit. For all observation types including calibration observations, n-exp is the most common descriptor. The usage of -int and -db is negligible. See Table 4-2 for actual usage of the different data products.

Data Product (HDU type)	Description	Descriptors	Avg cadence	Expected Daily Vol
Narrow-slit spectral-profile raster		n-ras[-db][-int]		
Narrow-slit intensity-window raster		n-ras[-db]-int		
Wide-slit raster		w-ras		
Dumbbell raster		n-ras-db[-int]		
Narrow-slit spectral-profile sit-and-stare		n-sit[-db]		
Wide-slit sit-and-stare		w-sit		
Dumbbell sit-and-stare		n-sit-db		
Narrow-slit full detector single exposure		n-exp		
Wide-slit full detector single exposure		w-exp		·

Table 4-8: SPICE L1 and L2 Data Products Matrix

L3 P:

In Table 4-9 we have listed all possible L3 P data products, and the file descriptors that a FITS file containing such a product may have.

Data Product (HDU type)	Description	Descriptors	Avg cadence	Expected Daily Vol
Narrow-slit spectral-profile raster		n-ras[-db][-int]		
Narrow-slit spectral-profile sit-and-stare		n-sit[-db]		

Table 4-9: SPICE L3 P Data Products Matrix

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Page: 64 of 70

Date: 25 Oct 2024

Printed copies of this document are uncontrolled

APPENDIX B RELEATIONSHIP BETWEEN SCIENCE HEADER PACKET PARAMETERS AND FITS KEYWORDS

Section 4.2.6.1 of [DATAICD] lists the Science Header Packet parameters that describe the collection of Science Data Packets that builds up a raster segment. These parameters may apply to all windows of an observation, a single window, a single raster segment, or the parameters may have one value per exposure. The values of these parameters are stored as FITS keywords, see Table 4-10. Note that the "StudyFlags" parameter is an 8-bit integer with the value of each bit indicating different instrument settings, see Table 4-11. Both the primary HDU and all image extensions store all the FITS keywords described in the table. The shaded table rows indicate parameters/keywords with one value for each exposure. The mean values of these keywords are stored in the primary HDU and all image extensions, and the individual values for each exposure are stored in a binary table extension, see Section 4.4.4.

Science Header Packet Parameters	FITS keywords
Total number of CCSDS packets for this window	NPACKETS -1 or -2
	(NPACKETS is the number
	of packets with
	observational data,
	excluding the Header
	Packet and the Final
	Packet if the latter only
	contains a checksum)
Observation ID	SPIOBSID
Focus position	FOCUSPOS
Slit position	SLIT_ID
Exposure time	XPOSURE * 10
Study ID	STUDY_ID
StudyFlags	STUDYFLG
Total Raster Segments per Window	NSEGMENT
ObsRasterNumber	RASTERNO
Raster Segment Number	_
Window Total Number	NWIN
Window Number	WINNO
Window Data Table ID	WINTABID
Window Start Column	PXBEG3
Window Width	PXEND3 - PXBEG3 + 1
Wavelength Binning Factor	NBIN3
Window Starting Row	PXBEG2
Window Height	PXEND2 - PXBEG2 + 1
Y Binning Factor	NBIN2
Compression Type	COMPTYPE
Compression Amount Parameter	COMPPARA
SHC FFT ID	SHCFFTID
Pixel Level Offset	PIXELOFF
Alignment Window Status	DUMBBELL
MCP SW Monitor Voltage	VN_MCPSW (and V_MCPSW)
MCP LW Monitor Voltage	VN_MCPLW (and V_MCPLW)
Gap SW Monitor Voltage	VN_GAPSW (and V_GAPSW)
Gap LW Monitor Voltage	VN_GAPLW (and V_GAPLW)

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Page: 65 of 70

Date: 25 Oct 2024

Printed copies of this document are uncontrolled

Science Header Packet Parameters	FITS keywords
Segment X Size	-
Acquisition Time when initiating black level reset after arriving at X	TIMAQOBT
Scan Mirror Position	MIRRPOS
Temperature 1	TN_FOCUS (and T_FOCUS)
Temperature 2	TN_GRAT (and T_GRAT)
Temperature 3	TN_SW (and T_SW)
Temperature 4	TN_LW (and T_LW)

Table 4-10: Telemetry Science Header Packet Parameters and their keyword equivalents. Note that the two parameters that describe a single raster segment do not have FITS keyword equivalents. Keywords in red are Solar Orbiter-wide FITS keywords. The values of the individual bits of STUDYFLG determine the values of the 6 derived keywords in Table 4-11. The voltages and temperatures are given in engineering units in the VN_XXXXX and TN_XXXXX keywords, and are converted to Volt and Celsius in the V_XXXXXX and T_XXXXXX keywords. Orange shading indicates parameters with one value per segment, blue shading indicates parameters with one value per exposure. In L1+ FITS files the onboard time TIMAQOBT is converted to UTC and given in TIMAQUTC (this keyword is not present L0 FITS files).

Bit	Study Flag Description	FITS Keywords
0 -1	Spare	_
2	AlignExcludeSpectral	NOSPECTR
	 0 = Do not exclude spectral window data 	
	1 = Exclude spectral window data	
3	Cal Mode Config	CALMODE
	0 = 1 Data Plane	
	1 = 2 Data Planes	
4	Double Exposure Number	DBLEXPNO
	0 = First Exposure	
	1 = Second Exposure	
5	Double Exposure Enabled	DBLEXP
	0 = False	
	1 = True	
6	Dark Map Subtraction Used?	DARKMAP
	0 = False	
	1 = True	
7	Black Level Subtraction Used	BLACKLEV
	0 = False	
	1 = True	

Table 4-11: FITS keywords derived from the value of STUDYFLG. All FITS keywords have values 0 or 1.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 66 of 70

Printed copies of this document are uncontrolled

APPENDIX C RELEATIONSHIP BETWEEN STUDY SETS, IORS AND FITS KEYWORDS

IAS provide Study Set files containing the definitions of all on-board studies, and IORs¹² containing the commanded parameters of each observation (i.e. each instance of a study). These files are used by the Science Data Pipeline to populate L1+ FITS keywords.

For each observation the SPICE Observation ID found in the telemetry (SPIOBSID, see Appendix B) is used to find the IOR containing the information about that specific observation. The IOR contains information about which Study Set was used by the planning tool in creating the IOR (the Study Set <version>, FITS keyword SETVER). Having found the correct Study Set file (FITS keyword SETFILE), the STUDY_ID of the telemetry is then used to find the Study Set's definition of the study in question.

If a parameter found in the IOR or Study Set is also found in the telemetry, the telemetry value is the one used as a FITS keyword value. This is to ensure that the metadata describe the actual contents of file, and not what was commanded.

The following FITS keywords are set based on XML tags, parameters values and XML comments in the IORs:

STP - Solar Orbiter Short-Term Plan number

WINSHIFT — The number of pixels the window is shifted towards the red on the detector relative to the base position of windows with the current MISOID

OBS ID - SOC Observation ID (not to be confused with the SPICE Observation ID, SPIOBSID)

OBS TYPE - Unique code for OBS MODE/STUDY, derived from OBSID

SOOPTYPE - Unique code for SOOPNAME, derived from OBSID

SOOPNAME - The name of the SOOP (given in XML comments in the IORs)

NRASTERS - The number of planned rasters for a given SPIOBSID

Table 4-12 below summarises the Study Set XML tags describing a study and their translation into FITS keywords.

XML tags	XML tag data type and values	FITS keywords	FITS keyword data type and values	In TLM
<studyset></studyset>				
<version></version>	0 ≤ int ≤ ?	SETVER	Same as XML tag	No
<studyinfo></studyinfo>				
<groundid></groundid>	0 ≤ int ≤ ?	MISOSTUD	Same as XML tag	No
<name></name>	String, free text	STUDY and OBS_MODE	Same as XML tag	No
<purpose></purpose>	String, {"Calibration", "Science", "Engineering"}	PURPOSE	Same as XML tag	No
<description></description>	String, free text	STUDYDES	Same as XML tag	No
<author></author>	String, free text	AUTHOR	Same as XML tag	No

¹² Instrument Operation Requests

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 67 of 70

XML tags	XML tag data type and values	FITS keywords	FITS keyword data type and values	In TLM
<onboardinfo></onboardinfo>				
<onboardid></onboardid>	0 ≤ int ≤ 63	STUDY ID	Same as XML tag	Yes
	0 2 111 2 00	_	Came do 711112 tag	100
<type></type>	String, {"Full Spectrum", "Spatial Scan", "Time Series", "Scanned Time Series"}	A mix of STUDYTYP and WIN_TYPE. These two keywords are populated using information in the telemetry.	STUDYTYP, {"Sit-and- stare", "Raster", "Single Exposure"} WIN_TYPE, {"Narrow-slit Spectral", "Dumbbell (lower)", "Dumbbell (upper)", "Wide-slit", "Intensity- window", "Full Detector Narrow-slit", "Full Detector Wide-Slit"}	Yes, impli citly
<slit></slit>	1 ≤ int ≤ 4	SLIT ID	Same as XML tag	Yes
<exposures></exposures>	1 ≤ int ≤ 480 ¹³	CDELT1 or CDELT4 (when <exposures> eq actual number of exposures)</exposures>	Same as XML tag (when <exposures> eq actual number of exposures)</exposures>	Yes
<exptime></exptime>	0.1 ≤ float ≤ 1023.5 ¹⁴	XPOSURE	Same as XML tag	Yes
<totalexptime></totalexptime>		XPOSURE for double exposure	Same as XML tag	No
<xstart></xstart>	float, default 0	XSTART. Also used when calculating CRVAL1	Same as XML tag	No
<stepsize></stepsize>	float, default ?	CDELT1	Same as XML tag	No
<delaytime></delaytime>	float, default ?	None	_	No
<alignmentwindowconfig></alignmentwindowconfig>				
<excludespectral></excludespectral>	boolean, default	NOSPECTR	Int, {0,1}	Yes

¹³ Any number from 1 to 64, multiples of 2 between 66 and 128, multiples of 4 between 132 and 256, multiples of 8 between 264 and 480

¹⁴ Overheads for resetting detector pixels are added to these numbers. The overhead scales with the number of pixels in the dispersion dimension. Resolution of expTime is 0.1 s between 0.1 s and 204.7 s, 0.5 s between 205 s and 1023.5 s.

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 68 of 70

XML tags	XML tag data type and values	FITS keywords	FITS keyword data type and values	In TLM
<compressionupper></compressionupper>				
<type></type>	String, {"Spatial Lossy", "Focal Lossy", "Spatial Uncompressed", "Focal Uncompressed", "SHC Low", "SHC High"}	COMPRESS	Same as XML tag	Yes, impli citly
<rawfactor></rawfactor>	1 ≤ Int ≤ 256?	COMP_RAT = raw data volume/compressed volume. Applies to all observations (not only JPEG compressed)	Int, {1,128}	Yes, impli citly
<shccoef></shccoef>	0 ≤ Int ≤ 7	SHCFFTID	Same as XML tag	Yes
<compressionlower></compressionlower>				
		See <compressionupper></compressionupper>		
<pre><options></options></pre>				
<readoutmode></readoutmode>	<pre>string, {"Destructive", "Non Destructive"}</pre>	READMODE	Same as XML tag	No
<calmode></calmode>	<pre>string, {"Uncompressed" , "Compressed", "Both"}</pre>	CALMODE	Int, {0,1} (0 = one data plane (compressed or uncompressed), 1 = two data planes (compressed and uncompressed)	Yes
<focuscal></focuscal>		None	_	No
<macrosteps></macrosteps>		None	_	No
<macrodelay></macrodelay>		None	_	No
<darkmap></darkmap>	boolean	DARKMAP	Int, {0,1}	Yes
<window></window>				
<pre><windowinfo></windowinfo></pre>	1			
<description></description>	string	EXTNAME. For merged windows the EXTNAME is based on the	Same as XML tag	No

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 69 of 70

XML tags	XML tag data type and values	FITS keywords	FITS keyword data type and values	In TLM
		EXTANMES of the		
		constituent windows.		
		For dumbbells, either		
		"DUMBBELL_UPPER_"		
		or		
		"DUMBBELL_LOWER_"		
		is prepended to the		
		description string.		
<wavelength></wavelength>		None	_	Yes
		(keywords describing		impl
		wavelength, e.g.		citly
		WAVEMIN, WAVEMAX) are		
		calculated from		
<onboardid></onboardid>	0 4 int 4 055	telemetry parameters) WINTABID	Como oo VIII toa	Vaa
	0 ≤ int ≤ 255		Same as XML tag	Yes
<pre><groundid></groundid></pre>	0 ≤ int ≤ ?	MISOWIN	Same as XML tag	No
<iwin_type></iwin_type>	String, { "", "Background",	IWIN_TYPE	Same as XML tag	
	"Line"}			
<pre><background_number></background_number></pre>	0 ≤ int ≤ 255	Used to determine	EXTNAME of	
		IWINBKG	extension storing	
			background	
			intensity-window	
number>	0 ≤ int ≤ 255	Used to determine	(Comma-	
		IWINLINE	separated list of)	
			EXTNAME(s) of	
			extension(s)	
			storing line	
			intensity-window	
<axis axisname="lambda"></axis>				
<start></start>		PXBEG3		Yes
<size></size>		PXEND3 - PXBEG3 +		Yes
 		NBIN3		Yes
<axis axisname="Y"></axis>				
<start></start>		PXBEG2		Yes
<size></size>		PXEND2 - PXBEG2 + 1		Yes
 		NBIN2		Yes
<compression></compression>				
		See		
		<compressionupper></compressionupper>		
<alignmentwindow></alignmentwindow>		DUMBBEXT	(Comma-	No
		Not implemented yet	separated list of)	

Ref: SPICE-UIO-DPDD-0002 Issue: 2.1

Date: 25 Oct 2024 Page: 70 of 70

XML tags	XML tag data type and values	FITS keywords	FITS keyword data type and values	In TLM
			EXTNAME(s) of the extension(s) containing dumbbell data for this window	

Table 4-12: Relationship between Study Generator XML tags and FITS keywords.